Столкновение при котором происходит смещение название. Определение места столкновения транспортных средств

Основными видами ДТП, при которых необходимо проведение АСР, являются столкновения, которые подразделяются на:

лобовое - столкновение ТС при встречном движении;

боковое - столкновение ТС с боковой стороной другого ТС;


касательное - столкновение ТС боковыми сторонами при встречном движении или движении в одном направлении;

опрокидывание - происшествие, при котором движущееся ТС опрокинулось;


наезд на стоящее ТС - происшествие, при котором движущееся ТС наехало на стоящее ТС, а также прицеп или полуприцеп;


наезд на препятствие - происшествие, при котором ТС наехало или ударилось о неподвижный предмет (опора моста, столб, дерево, ограждение и т. д.).

Особые виды ДТП, при которых необходимо проведение АСР

Особые виды ДТП - ДТП, осложненные опасными факторами, требующими специальной подготовки спасателей или привлечения дополнительных сил и средств.
ДТП с падением ТС в воду - ДТП, при которых ТС по каким-либо причинам падают в реки, озера, море, проваливаются под лед и т.п.
ДТП с падением ТС с крутых склонов - ДТП, при которых ТС по каким-либо причинам срываются с крутых склонов и при падении, как правило, несколько раз переворачиваются, ударяясь о выступы скал, и пролетают 100–150 м и более. Иногда ТС взрываются. Сами ТС превращается в груду искореженного металла.
ДТП на участке железной дороги - ДТП, при которых: ТС сталкивается с подвижным или стоящим железнодорожным составом на железнодорожных переезде или на непредназначенном для переезда участке железной дороги; ТС сталкивается с другим ТС на железнодорожном переезде; подвижный железнодорожный состав наезжает на ТС на железнодорожном переезде или на непредназначенном для переезда участке железной дороги.
ДТП с участием трамвая (троллейбуса) - ДТП, при которых трамвай (троллейбус) столкнулся (наехал) на другое ТС, или в результате обрыва и падения на ТС силовых проводов, или схода трамвая с рельсов и его опрокидывания пострадали ТС или люди.
ДТП с возникновением пожара – ДТП, сопровождающееся возгоранием аварийных ТС и перевозимых ими грузов.
Попадание ТС под завал - ДТП, при котором ТС с людьми в результате природных или техногенных явлений попало под лавину, сель, обвал, камнепад и т.п.
ДТП в туннеле (путепроводе) - ДТП, осложненные спецификой ограниченного пространства, затрудняющего доступ к месту ДТП, проведение АСР и эвакуацию пострадавших.
ДТП с транспортным средством, перевозящим опасный груз - ДТП с ТС, перевозящим груз, попадающий под категорию опасных, в результате которого произошла его утечка (выброс, возгорание и т.п.) или существует опасность возникновения такой ситуации, в том числе:
- ДТП с ТС, перевозящим горючие (ГЖ) или легковоспламеняющиеся жидкости (ЛВЖ), в результате которого произошел их разлив или утечка;
- ДТП с ТС, перевозящим аварийно химически опасные вещества (АХОВ), в результате которого произошел их разлив или утечка;
- ДТП с ТС, перевозящим радиационно опасные вещества (РВ), в результате которого произошел их разлив или утечка, повлекшие загрязнение ими окружающей среды;
- ДТП с ТС, перевозящим биологически опасные вещества (БВ), в результате которого произошел их разлив или утечка, повлекшие заражение ими окружающей среды;
- ДТП с ТС, перевозящим взрывчатые вещества и взрывоопасные предметы, при котором возникла угроза детонации ВВ и ВОП вследствие их перемещения, механического воздействия на них или нагрева (горения).

Транспортно-трасологическая экспертиза следов повреждений изучает закономерности отображения в следах информации о событии дорожно-транспортного происшествия и его участниках, способы обнаружения следов транспортных средств и следов на транспортных средствах, а также приемы извлечения, фиксации и исследования отобразившейся в них информации.

В ООО НЭУ «СудЭксперт» проводятся трасологические экспертизы в целях установления обстоятельств, определяющих процесс взаимодействия транспортных средств при контакте. При этом решаются следующие основные задачи:

  • установление угла взаимного расположения транспортных средств в момент столкновения
  • определение точки первоначального контакта на транспортном средстве
  • установление направления линии столкновения (направление ударного импульса или относительной скорости сближения)
  • определение угла столкновения (угол между направлениями векторов скоростей автомобилей перед столкновением)
  • опровержение или подтверждение контактно-следового взаи­модействия транспортных средств

В процессе следового взаимодействия оба участвующих в нем объекта нередко подвергаются изменениям, становятся носителями следов. Поэтому объекты следообразования подразделяются на воспринимающий и образующий в отношении каждого следа. Механическая сила, определяющая взаимное перемещение и взаимодействие объектов, участвующих в следообразовании, назы­вается следообразующей (деформирующей).

Непосредственное соприкосновение образующего и восприни­мающего объектов в процессе их взаимодействия, ведущее к появ­лению следа, называют следовым контактом. Соприкасающиеся участки поверхностей называют контактирующими. Различают следовой контакт в одной точке и контакт множества точек, распо­лагающихся по линии или по плоскости.

Какие существуют виды повреждений транспортных средств?

Видимый след — след, который может быть непосредственно воспринят зрением. К видимым относятся все поверхностные и вдавленные следы;
Вмятина — повреждения различной формы и размеров, характеризующиеся вдавленностью следовоспринимающей поверхности, которая появляется вследствие остаточной деформации;
Деформация — изменение формы или размеров физического тела или его частей под действием внешних сил;
Задиры — следы скольжения с приподнятостью кусочков и части следовоспринимающей поверхности;
Наслоение результат перенесения материала одного объекта на следовоспринимающую поверхность другого;
Отслоение отделение частиц, кусочков, слоев вещества с по­верхности транспортного средства;
Пробой сквозное повреждение шины, образующееся от вне­дрения в нее постороннего предмета, размером более 10 мм;
Прокол сквозное повреждение шины, образующееся от вне­дрения в нее постороннего предмета, размером до 10 мм;
Разрыв — повреждение неправильной формы с неровными кра­ями;
Царапина неглубокое поверхностное повреждение, длина ко­торого больше его ширины.

Транспортные средства оставляют следы, воздействуя на вос­принимающий объект давлением или трением. Когда следообразующая сила направлена по нормали к следовоспринимающей по­верхности, заметно преобладает давление. Когда следообразующая сила имеет тангенциальную направленность, — доминирует трение. При контактировании транспортных средств и других объектов в процессе дорожно-транспортного происшествия вследствие раз­личных по силе и направленности ударов возникают следы (трас­сы), которые подразделяются на: первичные и вторичные, объем­ные и поверхностные, статические (вмятины, пробоины) и динами­ческие (царапины, разрезы). Комбинированные следы представля­ют собой вмятины, переходящие в следы скольжения (встречаются чаще), либо наоборот, следы скольжения, заканчивающиеся вмятиной. В процессе следообразования возникают так называемые «парные следы», например, следу наслоения на одном из транспортных средств соответствует парный след отслоения на другом.

Первичные следы — следы, возникшие в процессе первичного, начального контакта транспортных средств между собой или транспортных средств с различными преградами. Вторичные следы — следы, появившиеся в процессе дальнейшего смещения и деформации вступивших в следовое взаимодействие объектов.

Объемные и поверхностные следы формируются благодаря физическому воздействию образующего объекта на воспринимающий. В объемном следе признаки образующего объекта, в частности, выступающие и углубленные детали рельефа, получают трехмерное отображение. В поверхностном следе имеется лишь плоскостное, двухмерное отображение одной из поверхностей транспортного средства или выступающих его деталей.

Статические следы образуются в процессе следового контакта, когда одни и те же точки образующего объекта воздействуют на одни и те же точки воспринимающего. Точечное отображение наблюдается при условии, что в момент следообразования образующий объект перемещался в основном по нормали относительно плоскости следа.

Динамические следы образуются, когда каждая из точек поверхности транспортного средства последовательно воздействует на ряд точек воспринимающего объекта. Точки образующего объекта получают так называемое превращенное линейное отображение. При этом каждой точке образующего объекта соответствует линия в следе. Это происходит при касательном перемещении образующего объекта относительно воспринимающего.

Какие повреждения могут быть источником информации о ДТП?

Повреждения как источник информации о дорожно-транспорт­ном происшествии можно подразделить на три группы:

Первая группа — повреждения, образующиеся при взаимном внедрении двух или более транспортных средств в начальный мо­мент взаимодействия. Это контактные деформации, изменение первоначальной формы отдельных деталей транспортных средств. Деформации занимают обычно значительную площадь и заметны при внешнем осмотре без применения технических средств. Наи­более распространенным случаем деформации является вмятина. Образуются вмятины в местах приложения усилий и, как правило, направлены внутрь детали (элемента).

Вторая группа — это разрывы, разрезы, пробои, царапины. Они характеризуются сквозным разрушением поверхности и концен­трацией следообразующей силы на незначительной площади.

Третья группа повреждений — отпечатки, т. е. поверхностные отображения на следовоспринимающем участке поверхности одно­го транспортного средства выступающих деталей другого транс­портного средства. Отпечатки представляют собой отслоения или наслоения вещества, которые могут быть взаимными: отслоение краски или иного вещества с одного объекта приводит к наслоению этого же вещества на другом.

Повреждения первой и второй групп всегда объемные, повре­ждения третьей группы — поверхностные.

Принято выделять также вторичные деформации, которые ха­рактеризуются отсутствием признаков непосредственного контак­тирования деталей и частей транспортных средств и являются следствием контактных деформаций. Детали изменяют свою форму под воздействием момента сил, возникающего в случае контактных деформаций по законам механики и сопротивления материалов.

Такие деформации располагаются на удалении от места непосред­ственного контакта. Повреждение лонжерона (лонжеронов) легко­вого автомобиля могут привести к перекосу всего кузова, т. е. об­разованию вторичных деформаций, появление которых зависит от интенсивности, направления, места приложения и величины уси­лия в процессе дорожно-транспортного происшествия. Вторичные деформации нередко ошибочно принимаются за контактные. Что­бы избежать этого, при осмотре транспортных средств в первую очередь следует выявить следы контактных деформаций и только после этого можно правильно распознать и выделить вторичные деформации.

Наиболее сложными повреждениями транспортного средства являются перекосы, характеризующиеся существенным изменени­ем геометрических параметров каркаса кузова, кабины, платформы и коляски, проемов дверей, капота, крышки багажника, ветрового и заднего стекла, лонжеронов и т. д.

Положение транспортных средств в момент удара при прове­дении транспортно-трасологической экспертизы, как правило, оп­ределяется в ходе следственного эксперимента по деформациям, возникшим в результате столкновения. Для этого поврежденные транспортные средства располагают как можно ближе друг к другу, стараясь при этом совместить участки, контактировавшие при уда­ре. Если это не удается сделать, то транспортные средства распола­гают таким образом, чтобы границы деформированных участков были расположены на одинаковых расстояниях друг от друга. По­скольку подобный эксперимент провести довольно сложно, то по­ложение транспортных средств в момент удара чаще всего опреде­ляют графическим способом, вычерчивая в масштабе транспорт­ные средства, и, нанеся на них поврежденные зоны, определяют угол столкновения между условными продольными осями транс­портных средств. Особенно хороший результат дает этот метод при экспертизе встречных столкновений, когда контактирующие участ­ки транспортных средств в процессе удара не имеют относительно­го перемещения.

Деформированные части транспортных средств, которыми они вошли в соприкосновение, дают возможность ориентировочно су­дить о взаимном расположении и механизме взаимодействия транспортных средств.

При наезде на пешехода характерными повреждениями транс­портного средства являются деформированные части, которыми был нанесен удар — вмятины на капоте, крыльях, повреждения передних стоек кузова и ветрового стекла с наслоениями крови, во­лос, фрагментов одежды потерпевшего. Следы наслоения волокон ткани одежды на боковых частях транспортных средств позво­лят установить факт контактного взаимодействия транспортных средств с пешеходом при касательном ударе.

При опрокидывании транспортных средств характерными по­вреждениями являются деформации крыши, стоек кузова, кабины, капота, крыльев, дверей. Свидетельствуют о факте опрокидывания также следы трения о поверхность дороги (разрезы, трассы, от­слоения краски).

Как проводится трасологическая экспертиза?

  • наружный осмотр транспортного средства, участвовавшего в ДТП
  • фотографирование общего вида транспортного средства и его повреждений
  • фиксация неисправностей, возникших в результате дорожно-транспортного происшествия (трещин, изломов, обрывов, дефор­маций и т.д.)
  • разборка агрегатов и узлов, их дефектовка для выявления скрытых повреждений (при возможности выполнения этих работ)
  • установление причин возникновения обнаруженных повреж­дений на предмет соответствия их данному дорожно-транспортному происшествию

На что обратить внимание при осмотре транспортного средства?

При осмотре транспортного средства, участвовавшего в ДТП, фиксируются основные характеристики повреждений элементов кузова и оперения ТС:

  • расположение, площадь, линейные размеры, объем и форма (позволяют выделить зоны локализации деформаций)
  • вид образования повреждений и направление нанесения (по­зволяют выделить поверхности следовосприятия и следообразова­ния, определить характер и направление движения транспортного средства, установить взаиморасположение транспортных средств)
  • первичность или вторичность образования (позволяют отде­лить следы ремонтных воздействий от вновь образовавшихся сле­дов, установить стадии контактирования, в целом совершить тех­ническую реконструкцию процесса внедрения транспортных средств и образования повреждений)

Механизм столкновения транспортных средств характеризует­ся классификационными признаками, которые делятся трасологией на группы по следующим показателям:

  • направлению движения: на продольные и перекрестные; характеру взаимного сближения: на встречные, попутные и по­перечные
  • относительному расположению продольных осей: на парал­лельные, перпендикулярные и косые
  • характеру взаимодействия при ударе: на блокирующие, сколь­зящие и касательные
  • направлению удара относительно центра тяжести: центральные и эксцентричные

Более подробную бесплатную консультацию по транспортно-трасологической экспертизе можно получить по телефонам ООО НЭУ «СудЭксперт»

При исследовании механизма столкновения в процессе сближения ТС эксперт устанавливает либо нарушение устойчивости, либо потерю управляемости перед столкновением и причины такого нарушения, определяют скорость ТС перед происшествием и в момент столкновения, устанавливает их расположение в определенные моменты времени, полосу, направление движения, угол встречи при столкновении.

Исследуя процесс взаимодействия ТС, эксперт устанавливает взаимное расположение их в момент удара, определяет направление удара и его воздействие на исследуемое движение.

При исследовании процесса отбрасывания ТС после столкновения эксперт устанавливает место столкновения по оставшимся следам и расположению ТС после происшествия, определяют скорости движения их после удара, направление отбрасывания.

Установление экспертом механизма столкновения и техническая оценка действий участников происшествия позволяют следственным органам и суду решить вопрос о причине происшествия и обстоятельствах, способствовавших его возникновению.

Методика экспертного исследования при установлении механизма столкновения зависит от вида столкновения. По основным классификационным признакам, определяющим механизм столкновения, все столкновения ТС можно разделить на следующие группы:

По углу между направлениями движения ТС – продольные (при движении параллельными или близкими к параллельным курсом) и перекрестные столкновения. Продольные столкновения подразделяют на встречные и попутные;

По характеру взаимодействия на участке контакта при ударе – блокирующие (при полном гашении относительной скорости в момент удара), скользящие и касательные столкновения.


Эти признаки характеризуют механизм столкновения обоих ТС. Кроме того, столкновение каждого из двух столкнувшихся ТС можно охарактеризовать признаками, присущими только данному ТС:

По характеру движения непосредственно перед ударом – столкновение без запаса, с запасом вправо или влево;

По месту приложения ударного импульса – столкновение боковое право - или левостороннее, переднее, заднее, угловое;

По направлению ударного импульса – столкновение центральное (когда направление удара проходит через центр массы транспортного средства), право - или левоэксцентричное.

Такая система классификации столкновений позволяет легко формализовать характеристику столкновения.

§ 2. Механизм столкновения транспортных средств

Общее понятие о механизме столкновения

Механизм столкновения ТС – это комплекс связанных объективными закономерностями обстоятельств, определяющих процесс сближения транспортных средств перед столкновением, и взаимодействие в процессе удара и последующее движение до остановки, анализ данных об обстоятельствах происшествия позволяет эксперту установить взаимосвязь между отдельными событиями, восполнить недостающие звенья и определить техническую причину происшествия. Формальное решение экспертом вопросов по отдельным разрозненным данным, без технической оценки соответствия их друг другу и установленным объективным данным, без вскрытия и объяснения противоречий между ними может привести к неправильным выводам.

При исследовании механизма происшествия признаки, непосредственно позволяющие установить то или иное обстоятельство, могут отсутствовать. Во многих случаях оно может быть установлено исходя из данных о других обстоятельствах происшествия, путем проведения экспертного исследования на основе закономерностей, связывающих все обстоятельства механизма происшествия в единую совокупность.

Особенности удара при столкновении

Теория удара исходит из идеальных условий, значительно упрощающих представление о взаимодействии тел при ударе. Так, принимается, что контакт соударяющихся тел происходит в одной точке, через которую проходит сила взаимодействия, что поверхности соударяющихся тел абсолютно гладкие, трение и зацепление между ними отсутствуют. Поэтому сила удара перпендикулярна к плоскости, касательной к поверхности соударяющихся тел в точке их соприкосновения. Длительность удара принимается равной нулю, и, поскольку импульс силы имеет конечное значение, считается, что сила удара возникает мгновенно, достигая бесконечно большой величины. Относительное смещение соударяющихся тел в процессе удара также считается равным нулю, а следовательно, взаимное отталкивание соударяющихся тел происходит лишь под действием сил упругих деформаций.

Взаимодействие ТС при столкновении значительно сложнее, чем описано выше. В процессе столкновения ТС контакт между ними возникает на обширных участках, причем в него вступают различные части, отчего силы взаимодействия появляются в разных местах. Направление и величина этих сил зависит от конструкции контактирующих частей (их формы, прочности, жесткости, характера деформации), поэтому силы взаимодействия различны в разных точках контакта. Поскольку деформации ТС при столкновении могут быть весьма значительными по глубине, силы взаимодействия переменны по величине и направлению.

Время столкновения весьма мало. Там не менее относительное смещение ТС за это время может существенно повлиять на их движение после столкновения.


Направление удара при столкновении и основное направление деформаций контактирующих частей не всегда совпадает с направлением относительной скорости движения ТС. Они могут совпадать лишь в тех случаях, когда контактирующие участки не проскальзывают в процессе удара. Если же происходит проскальзывание по всей поверхности, то возникают поперечные составляющие сил взаимодействия, вызывающие деформации в сторону наименьшей жесткости, а не в направлении продольных составляющих, где жесткость и прочность деформируемых частей может быть значительно выше (например, при ударе под углом по боковой стороне двери кабины ее поверхность деформируется не в направлении удара, а в поперечном направлении, если удар был скользящим).

Нельзя также полагать, что линия удара (вектор равнодействующей импульсов сил удара) при столкновении проходит через точку первоначального соприкосновения. При большой площади деформируемого участка основной удар может быть нанесен на значительном удалении от этой точки при взаимодействии с более прочными и жесткими частями, чем в точке первоначального контакта.

Механизм столкновения ТС можно разделить на три стадии: сближение ТС перед столкновением, взаимодействие при ударе и отбрасывание (движение после столкновения).

Первая стадия механизма столкновения – процесс сближения – начинается с момента возникновения опасности для движения, когда для предотвращения происшествия (или уменьшения тяжести последствий) требуется немедленное принятие водителями необходимых мер, заканчивается в момент первоначального контакта ТС. На этой стадии обстоятельства происшествия в наибольшей степени определяются действиями его участников. На последующих стадиях события обычно развиваются под действием неодолимых сил, возникающих в соответствии с законами механики. Поэтому для решения вопросов связанных с оценкой действий участников происшествия с точки зрения соответствия их требованиям безопасности движения, особое значение имеет установление обстоятельств происшествия на первой его стадии (скорость и направление движения ТС перед происшествием, их расположение по ширине проезжей части).

Некоторые обстоятельства происшествия на первой стадии не могут быть установлены непосредственно на месте или путем допроса свидетелей. Иногда их можно установить путем экспертного исследования механизма столкновения на последующих стадиях.

Вторая стадия механизма столкновения – взаимодействие между ТС – начинается с момента первоначального контакта и заканчивается в момент, когда воздействие одного транспортного средства на другое прекращается и они начинают свободное движение.

Взаимодействие ТС при столкновении зависит от вида столкновения, определяемого характером удара, который может быть блокирующим и скользящим. При блокирующем ударе ТС как бы сцепляются отдельными участками, и проскальзывание между ними отсутствует. При скользящем ударе контактирующие участки смещаются относительно друг друга, так как скорости транспортных средств уравнивается.

Процесс столкновения ТС при блокирующем ударе можно разделить на две фазы.

В первой фазе происходит деформация контактирующих частей в результате их взаимодействия. Она заканчивается в момент падения относительной скорости ТС на участке контакта до нуля и продолжается доли секунды. Огромные силы удара, достигающие десятки тонн, создают большие замедления (ускорения). При эксцентричных ударах возникают также угловые ускорения. Это приводит к разному изменению скорости и направления движения ТС и их развороту. Но поскольку время удара ничтожно мало, ТС не успевают существенно изменить свое положение в течение этой фазы, поэтому общее направление деформаций обычно почти совпадает с направлением относительной скорости.

Во второй фазе блокирующего удара после завершения взаимного внедрения контактировавших участков ТС перемещаются относительно друг друга под воздействием сил упругих деформаций, а также сил взаимного отталкивания, возникающих при эксцентричном ударе.

Величина импульса сил упругих деформаций по сравнению с импульсом сил удара велика. Поэтому при незначительной эксцентричности удара и глубоком внедрении контактировавших частей силы сцепления между ними могут воспрепятствовать разъединению ТС и вторая фаза удара может закончиться до их разъединения.

Скользящее столкновение имеет место в случаях, когда скорости на участках контакта не уравниваются и до начала отдаления ТС друг от друга взаимодействие происходит последовательно между их разными частями, расположенными по линии относительного смещения контактировавших участков. При скользящем ударе ТС успевает изменить взаимное расположение в процессе столкновения, что несколько изменяет и направление деформаций.

За время контакта возникают поперечные скорости ТС, что приводит к отклонению направления их деформаций.

Скользящий удар при незначительной глубине взаимного внедрения и высокой скорости относительного смещения называется касательным. При таком ударе скорости ТС после столкновения меняются незначительно, но направление их движения сожжет существенно измениться.

Расположение повреждений ТС от контакта друг с другом дает возможность определить их взаимное расположение в момент столкновения и уточнить место столкновения, если установлены расположение и направление движения одного из них в момент столкновения.

Иногда угол определяют по фотографиям поврежденных транспортных средств. Этот способ дает хорошие результаты только в том случае, когда снимки разных сторон автомобиля сделаны под прямым углом с одного и того же расстояния. В связи с тем, что проведение измерений деформации ТС и проведение фотосъемки для определения угла столкновения требует определенных навыков и познаний, целесообразно проводить их с участием экспертов.

Направление деформаций, определяющее направление удара, позволяет установить возможное смещение ТС от места столкновения, и по его расположению после происшествия, уточнить место столкновения.

Характер деформаций дает возможность установить угол столкновения ТС и расчетным путем определить значение интервала между двигавшимися параллельными курсами ТС перед поворотом одного из них на полосу другого (исходя из предельного по сцеплению радиуса поворота). Это позволяет уточнить место столкновения по ширине полосы движения.

Рис. 4. Виды расположения транспортных средств в момент ДТП.

Расположение повреждений на нижних частях ТС, которыми были оставлены трассы на дороге при столкновении, дает возможность уточнить положение ТС по ширине полосы его движения при образовании этих трасс у места столкновения.

Исследование повреждений окрашенных и металлических деталей позволяет установить направление движения соударяющихся автомобилей. Следы на поверхности поврежденного автомобиля, ширина которых больше, чем глубина, а длина больше, чем ширина, называются царапинами. Царапины идут параллельно поврежденной поверхности. Они имеют небольшую глубину и ширину вначале, расширяясь и углубляясь к концу. Если вместе с лакокрасочным покрытием повреждается грунтовка, то она отслаивается в виде широких, каплеобразных царапин, длиной 2-4 мм.

Повреждения, глубина которых больше ширины, называются задирами и вмятинами. Глубина задира обычно увеличивается от его начала к концу, что позволяет определить направление движения царапавшего предмета. На поверхности задира часто остаются острые заусенцы, которые отогнуты в том, же направлении, в котором двигался царапавший предмет. У автомобиля, двигавшегося медленнее, следы царапин направлены от задней части к передней, а у обгонявшего автомобиля – в противоположную сторону.

При встречном столкновении скорости автомобилей взаимно погашаются. Если их масса и скорость были одинаковыми, то они останавливаются вблизи места столкновения. Если массы и скорости были различными, то автомобиль, двигавшийся с меньшей скоростью или более легкий, отбрасывается назад. В том, случае если водитель грузового автомобиля в момент ДТП не снимет ногу с педали газа и растерявшись, продолжает нажимать на нее, то грузовой автомобиль может протащить волоком встречный легковой автомобиль на довольно большое расстояние от места столкновения.

Место столкновения ТС может быть установлено по признакам, зафиксированным в материалах дела (протоколах осмотра, схемах, фотоснимках). Информативность этих признаков различна. Некоторые дают возможность установить место столкновения с достаточной точностью, другие - приближенно, третьи могут быть лишь дополнительным подтверждением расположения места столкновения, определенного другими путями. Вывод о расположении места столкновения должен быть основан на исследовании совокупности всех таких признаков.

Основные признаки, с помощью которых устанавливают место столкновения ТС, могут быть подразделены на 5 групп: следы перемещения ТС; следы перемещения отброшенных объектов; расположение отделившихся от ТС объектов; расположение ТС после происшествия; повреждения ТС полученные при столкновении.

Первая группа следов характеризуется следующими признаками:

Резкое отклонение следа колеса от первоначального направления (при эксцентричном ударе по ТС или по переднему колесу);

Боковой сдвиг незаблокированного колеса или боковой сдвиг следа юза колеса (наиболее точно определяет положение ТС при столкновении);

Прекращение следа юза возникает при ударе в результате дополнительной нагрузки на колесо;

Образование следа проскальзывания колеса при заклинивании деформируемыми частями;

Образование следа колеса при выходе воздуха из шины, поврежденной ударом;

Следы колес обоих ТС перед столкновением (определяют положение ТС в момент столкновения по месту их пересечения с учетом взаимного расположения при ударе);

Следы трения деталей ТС о дорожное покрытие при деформации кузова или при разрушении ходовой части в момент удара.

Вторая группа следов характеризуется следующими признаками:

Следы тяжелых объектов (отделившихся от ТС частей, упавшего груза и др.) в виде царапин, притертостей. В начале их образования они имеют направление к месту отделения от ТС (близкое к месту столкновения).

Определение места столкновения по месту пересечения направлений таких следов тем точнее, чем их больше установлено.

Третья группа следов характеризуется расположением отделившихся от ТС объектов:

Осыпи земли (грязи) с деформируемых ударом и других нижних поверхностей ТС. Осыпь мельчайших частиц остается практически непосредственно на месте удара. Более крупные частицы могут смещаться по инерции в направлении движения ТС. Для более точного установления расположения ТС в момент удара необходимо знать, какому ТС принадлежит опавшая земля;

Участка рассеивания частиц лакокрасочного покрытия (ЛКП). Эти частицы, обладая малой инерцией, опадают в непосредственной близости от места столкновения и частично рассеиваются в направлении движения ТС после удара. Возможно их смещение потоками воздуха;

Участка осколков стекла. Позволяет приближенно судить о месте столкновения, когда их свободному падению не препятствовали поверхности, от которых могло происходить рикошетирование. Расположение наибольшего числа отделившихся от ТС при ударе объектов позволяет судить о месте столкновения приближенно, с учетом возможного их смещения от места столкновения после удара. Расположение отдельных крупных частей, как правило, не может служить признаком для установления места столкновения.

Четвертая группа следов - расположение ТС после происшествия:

Расположение обоих ТС после продольного встречного столкновения на одной стороне проезжей части - признак того, что столкновение произошло на этой же стороне проезжей части;

Расположение обоих ТС в непосредственной близости от места столкновения при движении во встречном направлении параллельными курсами до столкновения позволяет определить поперечное смещение центра тяжести одного их них от места, где был нанесен удар.

Пятая группа следов - повреждения ТС, полученные при столкновении:

Расположение повреждений ТС от контакта друг с другом дает возможность определить их взаимное расположение в момент столкновения и уточнить место столкновения, если установлены расположение и направление движения одного из них в момент столкновения;

Направление деформаций, определяющее направление удара, позволяет установить возможное смещение ТС от места столкновения и по его расположению после происшествия уточнить место столкновения;