Лазерные системы охраны периметра. Лазерная охранная сигнализация из указки

Такой вид сигнализации является одним из составляющих современных охранных систем. Их достоинство в надежности – они практически не взламываются, их невозможно обойти. Благодаря лазерной сигнализации уровень защищенности любого объекта, в сравнении с традиционными способами и устройствами, повышается.

У лазерных охранных систем много преимуществ:

  • Мобильность: модули легко переносятся с места на место, их можно располагать в различных местах;
  • Лазеры легко спрятать так, что о их присутствии преступник не узнает до появления сотрудников охраны;
  • Элементы, которые входят в систему охраны, легко сочетаются с любым интерьером, не портят его своим присутствием;
  • Возможность работать с сиренами, с выводом сигнала на пульт.

К их недостаткам относится большая стоимость; их сложно устанавливать и настраивать.

Основой сигнализации является лазер, который включается в систему охраны. Последние обладают достаточно высокой сложностью, потому дорогие. Отказываться от них не стоит – нужно попытаться сделать лазерную сигнализацию своими руками. Как показывают разработки умельцев, это требует нескольких устройств и комплектующих, которые можно приобрести довольно дешево. В итоге получается эффективная сигнализация на основе лазера.

В самодельной сигнализации применяют лазер и фотоприемник. Из лазера выходит луч, который принимается фотоприемником. При этом сопротивление последнего близко к нулю. Если луч чем-то перекрывается, то сопротивление фотоэлемента резво возрастает. Это приводит к разбалансировке электронной схемы, к которой подключены оба прибора, к включению исполнительных устройств и срабатыванию сигнализации.

При желании сделать лазерную сигнализацию своими руками, следует приобрести: лазерную указку, которая будет генерировать лазерный луч; фотоэлемент, у которого под воздействием светового потока меняется сопротивление; реле, которым будет подключаться, к примеру, звуковая сирена. Не делается система без инструментов и материалов для пайки, проводов, корпусных деталей, монтажных принадлежностей.

Схему лазерной сигнализации можно построить на основе таймера NE555, которым будет управляться ее работа.

«Плюсовая» цепь от источника питания подается на «плюс» звуковой сирены; «минусовая» – на 1-й выход таймера. Между ними устроена перемычка через резистор R2 и фоторезистор R3. От перемычки между последними элементами есть отвод к 6-му выходу таймера.

Далее по ходу «плюсовой» цепи устроены отводы: через резистор R1 на 2-й выход таймера и от него, через прерыватель, к «минусу» сирены; к 4-му, затем к 8-му выходам таймера. Кроме того, 3-й выход таймера подключен к переключателю прерывателя.

Когда на фоторезистор падает луч лазерной указки его сопротивление незначительное, потому электроток протекает по первой перемычке схемы через резистор R2 и фоторезисторR3. Когда луч возрастает, сопротивление фоторезистора сильно возрастает и протекание тока по указанной перемычке прекращается – он пойдет на таймер и от него на сирену, которая своим звуком известит о том, что кто-то пересек луч указки.

Когда речь заходит об охране зданий и имущества, традиционные средства безопасности — ограждения, охранники и камеры видеонаблюдения — имеют определенные ограничения. Современные технологии лазерного сканирования способны обойти многие из них и обеспечить безопасное, надежное и простое в эксплуатации решение.

Обзор технологий лазерного сканирования

Принцип работы лазерных датчиков систем безопасности зданий основан на времяпролетном или импульсном методе. Чувствительный элемент излучает импульс, который затем отражается от цели (в случае ее присутствия). Время, требуемое для прохождения импульса от датчика до отражателя и обратно, пропорционально расстоянию. По большому счету, лазерный сканирующий датчик работает по принципу радара, только вместо радиоволн для сканирования объекта используется свет. В сфере безопасности, эта технология применяется, чтобы быстро и точно идентифицировать факт вторжения на объект.

В сочетании с другими средствами и ПО для обеспечения безопасности, технология лазерного сканирования способна своевременно реагировать на угрозы безопасности объекта в автоматическом режиме. Например, к нему можно подключить камеры с функцией автосопровождения, тогда в случае обнаружения вторжения все передвижения «непрошеного гостя» по объекту будут фиксироваться и угрозу можно будет определить более точно.

Преимущества технологий лазерного сканирования в системах безопасности

Лазерные детекторы можно использовать в различных целях, но больше всего они подходят для охраны периметра из-за своей высокой точности и гибкости.

Современные технологии лазерного сканирования не только надежны и незаметны, но также имеют ряд уникальных возможностей, позволяющих сэкономить время и деньги:

  • отсутствие ложных срабатываний при неблагоприятных погодных условиях;
  • возможность использования внутри и снаружи помещения;
  • мобильность, позволяющая переносить устройства из одного места в другое, когда это необходимо;
  • практичность, так как этой технологии есть масса применений в сфере безопасности.

Благодаря этим ключевым преимуществам лазерное сканирование можно назвать мощным решением, которые выгодно выделяется на фоне других менее надежных, не таких гибких и практичных средств обеспечения безопасности.

Безопасность и неприметность лазерного луча

Лазерные сканирующие детекторы идеально подходят для систем безопасности, так как позволяют незаметно наблюдать за территорией объекта. Самое главное, что сам лазер имеет малую мощность (класс 1) и неопасен для глаз людей или животных в зоне наблюдения. Благодаря этому, такие детекторы можно использовать в местах большого скопления людей, например в крупных розничных магазинах.

Стойкость к погодным условиям

В отличие от других решений для охраны периметра, лазерные детекторы имеют ценное преимущество: высокая точность даже при неблагоприятных погодных условиях (дождь, снег, слепящий свет или низкая освещенность), которая достигается благодаря применению технологии многократного отражения сигнала.

Часть энергии импульса лазерного сканирующего датчика может отражаться от ближайших объектов (например, капель дождя или частиц пыли), в то время как остальная часть луча проходит дальше и отражается уже непосредственно от цели. В последствие датчики оценивают эти многократные отражения и игнорируют более слабые, спровоцированные условиями окружающей среды. Это позволяет минимизировать помехи и предотвратить ложные срабатывания, а это значит экономию времени и средств.

Кроме этого, лазерные сканирующие детекторы можно оснастить противосолнечными фильтрами, которые также возможно использовать для блокирования определенных участков охраняемой территории, например, исключить из зоны наблюдения близлежащую дорогу, чтобы проезжающие мимо автомобили не спровоцировали сигнал тревоги.

Упомянутые характеристики являются крайне важными при использовании снаружи (к примеру, для охраны периметра административного здания). Немаловажную роль играет и класс защиты самих устройств, например IP 67 обеспечит надежную работу датчиков даже при его полном погружении в воду.

Более широкая область применения — это еще одно уникальное преимущество технологий лазерного сканирования, недостающее другим решениям.

Лазерные датчики являются портативными устройствами и подходят для временного использования. Например, в последнее время возросла необходимость обеспечения безопасности в аэропортах и разработка мобильных решений для охраны периметра вышла на первый план. Лазерные датчики можно расставить по периметру вокруг припаркованного самолета, также как сигнальные конусы, чтобы к нему не могли приблизиться посторонние.

Удобство использования

Какими бы надежными и современными не были функциональные возможности решения, его будет сложно использовать, если оно непрактично. К счастью, технологии лазерного сканирования объединяют в себе и то, и другое, позволяя пользователю обеспечить охрану периметра буквально одним нажатием кнопки.

Технологии лазерного сканирования определенно выигрывают там, где другие решения не оправдывают ожиданий. Пользователь может быть уверенным в надежной защите периметра от вторжений и контролировать ситуацию. Подобное решение является экономически выгодным благодаря низкому числу ложных срабатываний и возможности использования в различных сценариях.

Альтернативой тепловым датчикам на современном рынке сигнализаций является ни что иное, как лазер. Подобные системы используются для охраны индустриальных, военных и банковских объектов.

В быту лазерная сигнализация пока не нашла широкого применения, однако, если есть растущие из нужного места руки и базовые навыки обращения с паяльником, можно самостоятельно сделать вполне работоспособный образец или заказать готовую модель.

Лазерная сигнализация – это специальное чувствительное устройство, простая схема которого основывается на взаимодействии лазерного луча и сирены. Пересекая лазерную «растяжку» срабатывает сигнализация, которую слышно в радиусе 100 метров . Она предназначена как для сигнала тревоги для охраны, так и для отпугивания преступников. Ещё существует смс-информирование или отправка голосового сообщения в качестве уведомления об опасности. Отметим, что редко используют лазерный сигнал из-за потери мощности и зависимости от метеоусловий.

Базовые блоки

Лазерный извещатель состоит из следующих элементов:

  • генератора;
  • блока питания;
  • лазера;
  • реле;
  • цифровой микросхемы;
  • фотоэлемента;
  • звуковой извещатель (для пущего эффекта может применяться и светодиодная лампочка).

Обычно устанавливаю такой агрегат ближе к полу на расстоянии в 25-35 см, чтобы особо невнимательные грабители либо не заметили его, либо не смогли свободно проползти под ним или перепрыгнуть.

Закрепляют лазер, блок питания и реле с одной стороны, а фотоэлемент крепится на другой стене так, чтобы луч попадал на линзу.

Когда охранная сигнализация данного типа задействована, луч проходит по прямой линии к фотоэлементу. Так как пучок света преодолевает большое расстояние и не рассеивается, то его можно отражать неопределённое количество раз при помощи обычных зеркальных поверхностей , направленных под определённым углом друг к другу. Это помогает создать запутанный лабиринт, пройти который, не задев такую «растяжку», практически невозможно.

Если вор-неудачник пересечёт луч, сигнал не поступает к фотоэлементу, возникает сопротивление и реле блокируется. Таким образом реле передает сигнал резистору, а последний - извещателю.

Сразу после нарушения в зоне активации лазер также прекращает работу , чтобы не задействовать фотоэлемент снова, иначе сигнал тревоги прервётся. Полностью выключить сигнализацию можно лишь отключив питание.

Чтобы сигнализация не срабатывала от обычных солнечных лучей или иных источников света фоторезистор имеет специальную изоляцию.

Схемы

На основе контроллера Arduino

Для сборки схемы понадобится детский лазер и фоторезистор.

На лазере есть кнопка, которая включает свечение. Вот пошаговая инструкция сборки настоящей, вполне работоспособной сигнализации.

  1. Разберите лазер, сняв насадку. Выньте батарейки и вытащите само устройство.
  2. Кнопку необходимо отпаять, после чего продеть в отверстие на корпусе провод и припаять его к кнопке.

Важно! Не допускайте перегрева контактов, все детали очень хрупкие.

  1. Соберите приборчик в обратном порядке.
  2. Фоторезистор необходимо поместить в закрытое пространство, чтобы исключить попадание лучей света (иначе не будет работать днём). Можно использовать коробок или тёмный пластиковый контейнер, укрепив изолентой.
  3. Фоторезистор монтируйте к контроллеру по приведёной схеме. Сопротивление резистора 10 кОм.
  4. Подключите контроллер к компьютеру и запустите среду Arduino IDE .
  5. Залейте следующий скетч

void setup()

Serial.begin(9600);

void loop()

Serial.println(analogRead(foto)); //Выводим на монитор последовательного порта значения с фоторезистора

delay(20);

  1. Установите датчик напротив лазера, добившись прямого попадания луча на фотоэлемент.
  2. В программаторе откройте “монитор последовательного порта” и отследите полученные значения. На их основе определите пороговую величину срабатывания сигнализации.
  3. Светодиод подключите к пину №5 контроллера и добавьте новый скетч.

#define foto 0 //Фотоэлемент подключен к пину 0 (аналоговый вход)

#define led 5 //светодиод подключен к 5 пину

void setup()

Serial.begin(9600);

pinMode(led, OUTPUT);

void loop()

if (analogRead(foto) < 930) //Значение меньше порогового

for (int i=0 ; i < 10 ; i++)

digitalWrite(led , HIGH);

delay(500);

digitalWrite(led , LOW);

delay(500);

else digitalWrite(led , LOW);

Итог. При прерывании луча значение сигнала на последовательном порте падает ниже пороговой величины. При этом контроллер выдаёт сигнал на светодиод, тот начинает мигать.

Смотрите видео демонстрацию работы устройства

Дальнейшее наращивание схемы и подключение дополнительных элементов проводите по вкусу. Отличный вариант – для получения сигнала на свой сотовый.

На тиристоре BT169

Для сборки потребуются следующие элементы.

  • тиристор BT169;
  • конденсатор;
  • резисторы 47k;
  • фоторезистор или LDR;
  • светодиод;
  • бытовой лазер;

Монтаж осуществляется согласно приведенной схеме.

Принцип действия аналогичен предыдущей модели – при прерывании луча фоторезистор блокирует схему. Тиристор работает как переключатель, подавая сигнал на звуковой сигнал или светодиод. Подробности монтажа и использования смотрите на ролике.

На микросхеме NE555

Необходимые элементы

  • piezo buzzer (пищалка);
  • резистор 750 Ом;
  • резистор 130 кОм;
  • микропереключатель;
  • фоторезистор;
  • микросхема интегрального таймера NE555.

Микросхема имеет широкий диапазон питающих напряжений: от 4.5 до 18 В, выходной ток достигает 200 мА. Сопротивление резисторов R1 и R2 рассчитывается в зависимости от напряжения питания.

Сборка по схеме не представляет особых затруднений. Следует учесть порядок выводов NE555, чтобы не сжечь микросхему.

За запуск отвечает вторая ножка, на неё нельзя подавать более 30% напряжения питания, за останов шестая ножка (не более 70% напряжения питания).

В остальном схема работает по классическому принципу – при отсутствие сигнала на фоторезисторе, повышается напряжение на шестой ножке, в результате подаётся питание на звуковой сигнал. Выключение с помощью микропереключателя.

Заключение

На основе простого механизма строится мощная и надёжная система охраны для предприятий и финансовых учреждений. Для применения в быту вы можете либо сами сделать систему защиты по своему вкусу, либо заказать готовый комплект в китайских интернет-магазинах, естественно, без всяких гарантий качества. Важный плюс – сравнительно небольшие энергозатраты делают лазерную сигнализацию

Рынок систем для защиты объектов от взломов и непредвиденных происшествий насыщен датчиками, которые способствуют установлению всестороннего контроля над жильем. Однако далеко не каждое устройство способно обеспечить надежную охрану, а подключение некачественного дешевого оборудования приводит к непредвиденным проблемам. Как альтернатива датчикам движения, применяется простая и безотказная лазерная сигнализация, которая срабатывает при попадании объекта в спектр луча.

Какой принцип работы сигнализации с лазерным лучом?

Сигнализации с лазерным лучом обычно покупают в готовом комплекте, но при желании их можно изготовить самостоятельно, не затрачивая много сил и средств. Весь принцип работы лазерной сигнализации связан со специальным инфракрасным лучом, который направляется под определенным углом к противоположной стене комнаты, где закреплен фотоэлемент.

Любой объект, попадающий в заданный спектр, создает преломление, способное подать сигнал на специальный извещатель. После подачи сообщения о нарушении, встроенный динамик оповестит жильцов или охрану о проникновении.

В комплект лазерного извещателя входят следующие конструкционные материалы:

  • Реле;
  • Простейшая микросхема от фонарика;
  • Фотоэлемент;
  • Блок питания;
  • Резистор;
  • Извещатель;
  • Генератор.

Благодаря тому, что лазерный светопоток не рассеивается и постоянно направлен в одну сторону, с помощью системы отражателей можно создать разнообразный рисунок, который невозможно обойти. В качестве отражателей применяют небольшие кусочки зеркал, расположенные под определенным углом в разных концах комнаты.

Процесс сборки элементов и деталей лазера

Принцип сборки состоит из последовательного припаивания отдельных элементов сигнализации к плате. В первую очередь требуется определиться с местом, где будет установлен лазерный сигнализатор и фотоэлемент. Чаще всего такие механизмы монтируют в нижней части комнаты на уровне 30 см от пола, что позволяет скрыть устройство от посторонних глаз.

На видео – эксперимент с лазерной сигнализацией:

Установленный лазер с одной стороны стены подсоединяется к реле и блоку питанию, а в противоположном месте, на расстоянии не более 10 м, крепится фотоэлемент с расчетом, что луч будет падать отвесно на линзу. При попадании объекта в спектр луча, фотоэлемент начинает нагреваться, реле передает сигнал резистору, а последний – извещателю.

Оповещатель выступает в роли отпугивателя, издавая сигнал мощностью до 100 Дцб, который можно услышать на расстоянии около 100 м.

В качестве питающего элемента следует применить обычную литиевую батарею, так как она будет потреблять минимальный объем энергии и практически необходима для издания тревожного сигнала.

Современные радиолюбители предлагают для функциональности системы встраивать модуль связи, который даст возможность отправлять SMS либо голосовое сообщение на определенный номер, что позволит не только отпугнуть грабителя, но и попытаться задержать его.

Используя игрушку с лазером, которая стоит, как вы знаете, копейки, можно создать сигнализацию и установить на входе в квартиру, гараж, двор. Расходов почти нету, а выгода несоизмеримо большая.

Чтобы собрать конструкцию, понадобится лазерная указка и несколько радиодеталей. Принцип действия сигнализации основан на чувствительности фоторезистора, реагирующего на луч лазера.

В этом видео показано, как собрать лазерную сигнализацию. Для этого потребуется указка и несколько деталей. Схема устройства собран на таймере 555. Для обнаружения лазерного излучения нам понадобится фоторезистор. Он соединен со вторым резистором, чтобы получить делитель напряжения. Сопротивление второго резистора должна быть сопоставима с фоторезистором. В нашем случае оно равно 100 ом. Когда фоторезистор не облучается, его сопротивление увеличивается. Это приводит к повышению напряжения на 6 ножек микросхемы. В результате появляется логический ноль на выходе микросхемы и включается пищалка.

Выключить динамик и сбросить систему можно, переведи логический анализ динамика на trigger. Переключившись назад, вернем схему в режим готовности.

Для проверки соберем схему на макете. Если все будет работать правильно, соберем на плате. Разместим фоторезистор на длинных ножках, чтобы иметь возможность настроить положение после монтажа. Прикрепим батарейный отёк к плате клеевым пистолетом. Свободные провода закрепим вокруг платы резинкой. Самое время установить систему. В простейшем случае лучше будет подобен растяжке, находящейся по одну сторону двери. Расположенных друг напротив друга. Сначала закрепим сигнализацию. Клейкой лентой закрепим кнопку указки во включенном состоянии. Смонтируем указку на месте. Настройки лучше точно на центр фото резистора. После этого включите систему. Любой входящий будет активировать сигнализацию. Одиночный растяжка работает отлично. С помощью нескольких зеркал можно покрыть лучами всю комнату. Закрепим указку на одной из поверхностей. Луч направлен на одну из стен. Продолжайте добавлять зеркало. Главное, чтобы последнее направляло луч на фоторезистор.

Так как система состоит из одного непрерывного лазера, любое препятствие на пути включит сигнализацию.

Приятным преимуществом такой сигнализации является способность охватить значительное пространство, если дополнить ее системой зеркал. Луч будет пересекать пространство по множеству каналов, контролируя малейшие участки площадки.

Для увеличение длительности работы замените батарейки более мощными или аккумуляторами.

Может вам хочется научиться разбираться в принципе работы электросхем на примере ?