Что такое локальная шина? Сравнение и характеристики шин Характеристики шины vlb.

Локальная шина VLB

Локальная шина стандарта VLB (VESA Local Bus, VESA – Video Equipment Standart Association – Ассоциация стандартов видеооборудования) разработана в 1992 году. Главным недостатком шины VLB является невозможность её использования с процессорами, пришедшими на замену МП 80486 или существующими параллельно с ним (Alpha, PowerPC и др.).

Шины ввода-вывода ISA, MCA, EISA имеют низкую производительность, обусловленную их местом в структуре PC. Современные приложения (особенно графические) требуют существенного повышения пропускной способности, которое могут обеспечить современные процессоры. Одним из решений проблемы повышения пропускной способности было применение в качестве шины подключения периферийных устройств локальной шины процессора 80486. Шину процессора использовали как место подключения встроенной периферии системной платы (контроллер дисков, графического адаптера).

VLB - стандартизованная 32-битная локальная шина, практически представляющая собой сигналы системной шины процессора 486, выведенные на дополнительные разъемы системной платы. Шина сильно ориентирована на 486 процессор, хотя возможно ее использование и с процессорами класса 386. Для процессоров Pentium была принята спецификация 2.0, в которой разрядность шины данных увеличена до 64, но она распространения не получила. Аппаратные преобразователи шины новых процессоров в шину VLB, будучи искусственными "наростами" на шиннной архитектуре, не прижились, и VLB дальнейшего развития не получила.

Конструктивно VLB-слот аналогичен 16-битному обычному MCA-слоту, но является расширением системного слота шины ISA-16, EISA или MCA, располагаясь позади него вблизи от процессора. Из-за ограниченной нагрузочной способности шины процессора больше трех слотов VLB на системной плате не устанавливают. Максимальная тактовая частота шины - 66 МГц, хотя надежнее шина работает на частоте 33 МГц. При этом декларируется пиковая пропускная способность 132 Мбайт/с (33 МГц x 4 байта), но она достигается только внутри пакетного цикла во время передач данных. Реально в пакетном цикле передача 4 x 4 = 16 байт данных требует 5 тактов шины, так что даже в пакетном режиме пропускная способность составляет 105.6 Мбайт/с, а в обычном режиме (такт на фазу адреса и такт на фазу данных) - всего 66 Мбайт/с, хотя это и значительно больше, чем у ISA. Жесткие требования к временным характеристикам процессорной шины при большой нагрузке (в т. ч. и микросхемами внешнего кэша) могут привести к неустойчивой работе: все три VLB-слота могут использоваться только на частоте 40 МГц, при нагруженной системной плате на 50 МГц может работать только один слот. Шина в принципе допускает и применение активных (Bus-Master) адаптеров, но арбитраж запросов возлагается на сами адаптеры. Обычно шина допускает установку не более двух Bus-Master адаптеров, один из которых устанавливается в "Master"- слот.

Шину VLB обычно использовали для подключения графического адаптера и контроллера дисков. Адаптеры локальных сетей для VLB практически не встречаются. Иногда встречаются системные платы, у которых в описании указано, что они имеют встроенный графический и дисковый адаптер с шиной VLB, но самих слотов VLB нет. Это означает, что на плате установлены микросхемы указанных адаптеров, предназначенные для подключения к шине VLB. Такая неявная шина по производительности, естественно, не уступает шине с явными слотами. С точки зрения надежности и совместимости это даже лучше, поскольку проблемы совместимости карт и системных плат для шины VLB стоят особенно остро.

Accelerated Graphics Port (AGP)

Стандарт на AGP (Accelerated Graphics Port - ускоренный графический порт) был разработан фирмой Intel с для того, чтобы не меняя сложившийся стандарт на шину PCI, ускорить ввод/вывод данных в видеокарту и, кроме этого, увеличить производительность компьютера при обработке трехмерных изображений без установки дорогостоящих двухпроцессорных видеокарт с большими объемами как видеопамяти, так и памяти под текстуры, z-буфер и т.п.. Этот стандарт был поддержан большим количеством фирм, входящих в AGP Implementors Forum, организацию, созданную на добровольной основе для внедрения этого стандарта. Поэтому развитие AGP было довольно стремительным. Стартовая версия стандарта - AGP 1.0.

Конструктивное исполнение представляет собой отдельный слот с питанием 3.3 V, напоминающий слот PCI, но на самом деле никак с ним несовместимом. Обычная видеокарта не может быть установлена в этот слот и наооборот.

Скорость передачи данных до 532 Мбайт/с, обусловлена частотой шины AGP до 132 МГц, отсутствием мультиплексирования шины адреса и данных (на PCI по одним и тем же физическим линиям сначала выдается адрес, а потом данные). AGP имеет частоту шины 66 МГц и ту же разрядность и в стандартном режиме (точнее - режим "1x") может пропустить 266 Мбайт/с. Для повышения пропускной способности шины AGP в стандарт заложена возможность передавать данные, используя как передний так и задний фронт синхросигнала - режим 2x. В режиме 2x пропускная способность 532 Мбайт/с. При достижении частоты шины в 100 МГц скорость обмена возрастет до 800 Мбайт/с.

Кроме "классического" способа адресации, как на PCI, в AGP может использоваться режим sideband addressing, называемый "адресацией по боковой полосе". При этом используются специальные, отсутствующие в PCI, сигналы SBA (SideBand Addressing). В отличие от шины PCI на AGP присутствует конвейрная обработка данных.

Основная обработка трехмерных изображений выполняется в основной памяти компьютера как центральным процессором, так и процессором видеокарты. Механизм доступа процессора видеокарты к памяти получил название DIrect Memory Execute (DIME - непосредственное выполнение в памяти). Следует упомянуть, что сейчас не все видеокарты стандарта AGP поддерживают этот механизм. Некоторые карты пока имеют только механизм, аналогичный bus master на шине PCI. Не следует путать этот принцип с UMA, который используется в недорогих видеокартах, размещенных, как правило, на материнской плате. Основные отличия: . Область основной памяти компьютера, которая может использоваться AGP картой (ее также называют "AGP память"), не заменяет память экрана. В

UMA основная память используется как память экрана, а AGP память лишь дополняет ее. . Пропускная способность памяти в UMA видеокарте меньше, чем для шины

PCI. . Для вычислений текстур привлекаются только центральный процессор и процессор видеокарты. . Центральный процессор записывает данные для видеокарты непосредственно в область обычной памяти, доступ к которой получает также и процессор видеокарты. . Выполняются только операции чтения/записи в память. Нет арбитража на шине (AGP порт всегда один) и временных затрат на него

Обычная память (даже SDRAM) существенно дешевле, чем видеопамять для графических карт.

В декабре 1997 года фирма Intel выпустила предварительную версию стандарта AGP 2.0, а в мае 1998 года окончательный вариант. Основные отличия от предыдущей версии: . Скорость передачи может быть увеличена еще в два раза по сравнению с

1.0 - этот режим получил название "4x" - и достигать значения 1064

Мбайт/с. . Скорость передачи адреса в режиме "адресации по боковой полосе" также может быть увеличена еще в два раза. Добавлен механизм "быстрой записи" Fast Write (FW). Основная идея - запись данных/команд управления непосредственно в AGP устройство, минуя промежуточное хранение данных в основной памяти. Для устранения возможных ошибок в стандарт на шину введен новый сигнал WBF# (Write

Buffer Full - буфер записи полон). Если сигнал активен, то режим FW невозможен.

В июле 1998 года Intel выпустила версию 0.9 спецификации на AGP Pro, существенно отличающейся конструктивно от AGP 2.0. Краткая суть отличий в следующем: . Изменен разъем AGP - добавлены выводы по краям существующего разъема для подключения дополнительных цепей питания 12V и 3.3V . Совместимость с AGP 2.0 только снизу вверх - платы с AGP 2.0 можно устанавливать в слот AGP Pro, но не наооборот. . AGP Pro предназначена только для систем с ATX форм-фактором. . Поскольку карте AGP Pro разрешено потребление до 110 Wt (!!), высота элементов на плате (с учетом возможных элементов охлаждения) может достигать 55 мм, поэтому два соседних слота PCI должны оставаться свободными. Кроме этого, два соседних слота PCI могут использоваться платой AGP Pro для своих целей. . С точки зрения схемотехники новая спецификация ничего не добавляет, кроме специальных выводов, сообщающих системе о потреблении платы AGP Pro.

AGP быстро прижился в обыкновенных настольных системах из-за своей дешевизны и скорости, а видеокарты на AGP почти вытеснили обычные PCI- видеокарты.

Шина VLB (VESA Local Bus - локальная шина VESA) - разработана в 1992 г. Ассоциацией стандартов видеооборудования (VESA - Video Electronics Standards Associa­tion), поэтому часто ее называют шиной VESA.

Шина VLB, по существу, является расширением внутренней шины МП для связи с ви­деоадаптером и реже с винчестером, платами Multimedia, сетевым адаптером. Разрядность шины - 32 бита, на подходе 64-разрядный вариант шины. Реальная скорость передачи дан­ных по VLB - 80 Мбайт/с (теоретически достижимая - 132 Мбайт/с).

Недостатки шины:

· рассчитана на работу с МП 80386, 80486, пока не адаптирована для процессоров Pentium, Pentium Pro, Power PC;

· жесткая зависимость от тактовой частоты МП (каждая шина VLB рассчитана только на конкретную частоту);

· малое количество подключаемых устройств - к шине VLB могут подключаться толь­ко четыре устройства;

· отсутствует арбитраж шины - могут быть конфликты между подключаемыми уст­ройствами.

Шина PCI (Peripheral Component Interconnect - соединение внешних уст­ройств) - разработана в 1993 г. фирмой Intel. Шина PCI является намного более универсальной, чем VLB, имеет свой адаптер, по­зволяющий ей настраиваться на работу с любым МП: 80486, Pentium, Pentium Pro, Power PC и др.; она позволяет подключать 10 устройств самой разной конфигурации с возможностью автоконфигурирования, имеет свой "арбитраж", средства управления передачей данных. Разрядность PCI - 32 бита с возможностью расширения до 64 бит, теоретическая про­пускная способность 132 Мбайт/с, а в 64-битовом варианте - 263 Мбайт/с (реальная вдвое ниже). Шина PCI хотя и является локальной, выполняет и многие функции шины расшире­ния, в частности, шины расширения ISA, EISA, MCA (а она совместима с ними) при нали­чии шины PCI подключаются не непосредственно к МП (как это имеет место при использовании шины VLB), а к самой шине PCI (через интерфейс расширения). Варианты конфигурации систем с шинами VLB и PCI показаны соответственно на рис. 4.3 и 4.4. Следует иметь в виду, что использование в ПК шин VLB и PCI возможно только при наличии соответствующей VLB- или PCI-материнской платы. Выпускаются ма­теринские платы с мультишинной структурой, позволяющей использовать ISA/EISA, VLB и PCI, так называемые материнские платы с шиной VIP (по начальным буквам VLB, ISA и PCI).

Рис. 4.3. Конфигурация системы с шиной VLB

Рис. 4.4. Конфигурация системы с шиной PCI

Таблица 4.4. Основные характеристики шин

Параметр

Разрядность шины, бит данных адреса

Рабочая частота, МГц

Пропускная способность. Мбайт/с теоретическая практическая

Число подключаемых устройств, шт.

Локальные шины IDE (Integrated Device Electronics), EIDE (Enhanced IDE), SCSI (Small Computer System Interface) используются чаще всего в качестве интерфейса только для внешних запоминающих устройств.

ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ ПК

Основными характеристиками ПК являются:

1. Быстродействие, производительность, тактовая частота. Единицами измерения быстродействия служат:

МИПС (MIPS - Mega Instruction Per Second) - миллион операций над числами с фиксированной запятой (точкой);

МФЛОПС (MFLOPS - Mega FLoating Operations Per Second) - миллион операций над числами с плавающей запятой (точкой);

КОПС (KOPS - Kilo Operations Per Second) для низкопроизводительных ЭВМ - ты­сяча неких усредненных операций над числами; ГФЛОПС (GFLOPS - Giga FLoating Operations Per Second) - миллиард операций в секунду над числами с плавающей запятой (точкой).

Оценка производительности ЭВМ всегда приблизительная, ибо при этом ориентиру­ются на некоторые усредненные или, наоборот, на конкретные виды операций. Реально при решении различных задач используются и различные наборы операций. Поэтому для харак­теристики ПК вместо производительности обычно указывают тактовую частоту, более объ­ективно определяющую быстродействие машины, так как каждая операция требует для своего выполнения вполне определенного количества тактов. Зная тактовую частоту, можно достаточно точно определить время выполнения любой машинной операции.

Пример 4.14. При отсутствии конвейерного выполнения команд и увеличении внут­ренней частоты у микропроцессора (см. подразд. 4.3) тактовый генератор с частотой 33 МГц обеспечивает выполнение 7 млн. коротких машинных операций (сложение и вычитание с фиксированной запятой, пересылки информации и др.) в секунду; с час­тотой 100 МГц - 20 млн. коротких операций в секунду.

2. Разрядность машины и кодовых шин интерфейса.

Разрядность - это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при прочих равных условиях, будет больше и производительность ПК.

3. Типы системного и локальных интерфейсов.

Разные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды. 4. Емкость оперативной памяти. Емкость оперативной памяти измеряется чаще всего в мегабайтах (Мбайт), реже в ки­лобайтах (Кбайт). Напоминаем: 1 Мбайт = 1024 Кбайта = 10242 байт. Многие современные прикладные программы при оперативной памяти емкостью меньше 8 Мбайт просто не работают либо работают, но очень медленно. Следует иметь в виду, что увеличение емкости основной памяти в 2 раза, помимо всего прочего, дает повышение эффективной производительности ЭВМ при решении слож­ных задач примерно в 1,7 раза.

Издание: Архитектура ПК, комплектующие, мультимедиа

5. Шины компьютера

Шина ПК - это канал (магистраль), который связывает между собой процессор, ОЗУ, кэш-память, контроллеры устройств ПК, а также разъемы (слоты) расширения на материнской плате для подключения различных контроллеров устройств ввода/вывода. При этом для сохранения совместимости данные слоты должны быть механически и электрически идентичны в разных моделях IBM-совместимых компьютеров.
По шине передаются как данные, так и управляющие сигналы.
Работа шины осуществляется в соответствии с определенными правилами, регламентированными стандартами.
Важнейшие характеристики шин: частоты, разрядности, скорости передачи данных. При этом, как правило, частота измеряется в мегагерцах, разрядность - в битах, скорость - в мегабайтах в секунду или в мегабитах в секунду.

Шины ISA, EISA, MCA

Наиболее распространены три основных стандарта системной шины для IBM-совместимых ПК:

  • Industry Standard Architecture (ISA);
  • Extended Industry Standard Architecture (EISA);
  • Micro Channel Architecture (MCA).

ISA - системная шина (ISA-bus), которая была специально разработана в 1984 г. под возможности процессоров i80286 для IBM PC/AT286. Для ISA-шины часто используется другое название - AT-шина. Эта шина была предназначена заменить шину ХТ ПК IBM PC/XT и аналогичных IBM-совместимых ПК на основе процессоров i8086, i8088 и их аналогов. Ввиду неперспективности морально устаревшей шины XT ее особенности и возможности рассматривать здесь нецелесообразно. Шина ISA позволяет передавать 16-разрядные данные и команды с частотой 8 МГц, что соответствует скорости 16 Мбайт/с. Значения этих параметров были сравнительно высокими и достаточными не только для того уровня развития компьютерной техники, они и в настоящее время часто удовлетворяют требованиям ПК для решения задач, не требующих высокой производительности и не критичных к времени их выполнения. Данная шина стала стандартом для IBM-совместимых ПК на длительный срок.
Системная шина EISA (EISA-bus) фактически является расширением шины ISA. Частота шины EISA - 8 МГц. Однако эта шина характеризуется большей разрядностью - 32 бита и более высокой скоростью передачи данных - до 33 Мбайт/с. Шина EISA совместима с ISA-шиной: кроме собственно 32-битных плат EISA-контроллеров на EISA-шине могут быть установлены стандартные 16-битные платы ISA. В настоящее время шина EISA в основном используется в некоторых вариантах файл-серверов компьютерных сетей.
MCA - системная шина с высокой скоростью передачи данных - до 160 Мбайт/с и разрядностью шины данных от 16 до 64 бит. Разработка и исключительное право на ее использование принадлежит фирме IBM. Вероятно поэтому, для ПК, использующих MCA, рынок предлагает сравнительно мало периферийных устройств и по относительно высоким ценам. Вследствие этого популярность данной шины сравнительно низка и производство компьютеров с шиной МСА практически прекращено.
Развитие вычислительной техники и расширение области применения ПК сопровождаются увеличением потоков информации и скорости передачи данных между процессором, внутренней и внешней памятью, устройствами ввода/вывода и т. д. Однако данное увеличение сдерживается ограниченной пропускной способностью указанных системных шин. Все это требует новых архитектурных решений, обеспечивающих повышение производительности ПК.

Шины VLB, PCI

Одним из таких решений явилось введение в состав архитектуры ПК отдельной шины для данных, поступающих для увеличения скорости их передачи в обход системной шины (ISA, MCA, EISA), например, для связи процессор-память так называемой локальной шины - Local Bus (LB). Локальная шина быстрее, чем шины ISA, EISA, потому что данные по ней передаются с внешней тактовой частотой используемого в составе ПК процессора. Например, 33 МГц в случае Intel 486DX2-66, тогда как стандартная шина ISA работает при тактовой частоте 8 МГц.
Стандарт локальной шины VESA (VESA local bus) был разработан и введен в 1992 г. фирмами-производителями компьютерной техники, входящими в ассоциацию VESA (Video Electronics Standart). При разработке нового стандарта одновременно решались две задачи. Первая - повышение производительности компьютеров за счет увеличения пропускной способности системных шин. Вторая - сохранение преемственности в использовании стандартного оборудования. В результате была создана 32-разрядная локальная шина - VESA local bus (VLB), дополняющая стандартную системную шину ISA при обмене данными процессора с контроллерами монитора, жесткого диска, кэш-памяти, сети и т. д. В соответствии со стандартом максимальное число контроллеров, подключаемых к данной локальной шине, было установлено в количестве не более трех. Тактовая частота VLB соответствовала частоте процессора. При внешней частоте процессора, равной 33 МГц, шина VLB обеспечивала скорость передачи данных до 132 Мбайт/с.
К основным недостаткам шины VLB следует отнести следующие: несовместимость и слабую нагрузочную способность VLB. Действительно, поскольку быстродействие VLB связано с тактовой частотой процессора, контроллеры, подключаемые к шине VLB, должны были обеспечивать работу на этой частоте. На других ПК частота могла отличаться. Слабая нагрузочная способность VLB в основном была связана с тем, что данная шина фактически являлась продолжением контактов собственной шины процессора ПК, что и отражено на приведенном рисунке. Кстати, этим объясняется совпадение частоты шины VLB и внешней тактовой частоты процессора. Каждое подключаемое устройство является дополнительной нагрузкой и искажает форму передаваемых процессором сигналов (их фронтов). Именно поэтому число подключаемых к локальной шине VLB устройств ограничено: стандарт VLB предусматривает подключение к данной шине не более трех устройств, обычно это одно или два устройства. Как правило, это контроллеры монитора и жестких дисков.

Рисунок

Альтернативный вариант локальной шины был разработан фирмой Intel - шина PCI (Peripheral Component Interconnect). Эта шина образует 32-битный канал между процессором и контроллерами периферийных устройств. Для PCI частота ограничена 33 МГц, что позволяет передавать данные по шине, как и в случае использования шины VESA, со скоростью до 132 Мбайт/с. Таким образом, шина PCI имеет практически такие же скоростные свойства, что и шина VLB при частоте процессора равной 33 МГц. Однако число контроллеров не ограничивается тремя, как для VLB, а может достигать десяти. Стандарт шины PCI поддерживает спецификации VESA для BIOS и видеоадаптеров. Кроме того, локальная шина PCI оптимально соответствует 64-битной технологии современных процессоров. Рисунок

Стандарт PCI предусматривает конфигурирование устройств, подключаемых к компьютеру, программным способом, что соответствует концепции plug-and-play (включил и работай). При этом в момент обнаружения нового устройства персональный компьютер без перезагрузки и выхода из текущего приложения должен установить параметры, необходимые для работы устройств в составе системы: номера прерываний IRQ, номера каналов прямого доступа DMA и т. д. Для реализации этой возможности необходимо, чтобы аппаратно-программное обеспечение ПК (BIOS и ОС) поддерживало plug-and-play. К операционным системам, поддерживающим ряд спецификаций технологии plug-and-play, относятся, например, Windows 95, Windows 98 и OS/2 Warp.
Шина PCI архитектурно сложнее. Однако фирма Intel выпустила ряд специализированных микросхем для шины PCI, упростив тем самым ее реализацию. Это позволило шине PCI полностью вытеснить шину VLB из архитектуры ПК.
Архитектура современных ПК, ориентированная на использование в своем составе локальных шин, способствует повышению общей производительности компьютеров. В результате системные и прикладные программы выполняются значительно быстрее.
Традиционно шина VLB в основном использовалась в ПК с процессорами 486, в то время как PCI - в ПК, начиная с процессоров Pentium. Хотя имелись варианты PCI и для 486 компьютеров. Кстати, следует отметить, что для 486 ПК в некоторых случаях использование VLB могло быть даже предпочтительнее шины PCI. Действительно, для PCI, как это уже отмечалось, стандарт устанавливает тактовую частоту равной 33 МГц, а для VLB - равенство частоты шины с внешней тактовой частотой процессора. Поэтому при использовании процессоров с внешней тактовой частотой 40 МГц, например, Am486DX/40, Am486DX2/80, Am486DX4/120, ПК с VLB обладали некоторыми преимуществами. Так, контроллеры устройств, подключенные к VLB процессора с внешней частотой в 40 МГц, - видеоадаптеры, жесткие диски, сетевые карты и т. д., - обеспечивали повышенную скорость работы по сравнению с использованием PCI или VLB с процессором с внешней частотой 33 МГц. Это связано с тем, что работа контроллеров и обмен данными осуществляются в соответствии с частотой используемой локальной шины.
Кстати, необходимо отметить, что в современных материнских платах частота шины PCI задается через частоту шины процессора.
Конфигурации ПК с несколькими шинами, например с ISA и PCI, позволили сочетать высокую производительность компьютеров с аппаратной и программной совместимостью широкого спектра контроллеров и узлов ПК, обладающих разными скоростными и электрическими характеристиками.
В настоящее время локальные шины уже не выделяют в отдельный вид. Эти шины считают такими же системными шинами, как и традиционные ISA.

Host-bus

Архитектуры процессоров, персональных компьютеров, материнских плат и системных шин, специализированные микросхемы поддержки и стандарты шин VLB и PCI продолжают развиваться. Уже предложены улучшенные варианты данных стандартов, обеспечивающих дальнейшее увеличение пропускной способности указанных локальных шин и, соответственно, увеличение производительности ПК. При этом развитие подсистем ПК направлено как на универсализацию некоторых элементов, так и на специализацию других. С целью увеличения производительности и функциональных возможностей ПК при снижении себестоимости происходит как объединение отдельных подсистем, так и их разделение. Это касается и архитектуры шин ПК.
Поколение процессоров Pentium, Pentium Pro, Pentium MMX, Pentium II имеет более высокие внешние частоты по сравнению с процессорами 486. Для наиболее распространенных вариантов процессоров 486 внешняя частота не превышает следующих значений: для процессоров 486 фирмы Intel - 33 МГц, для процессоров 486 фирмы AMD - 40 МГц.

Частотные параметры процессоров Pentium
Процессор Частота процессора, МГц
внутренняя внешняя
Pentium-200 200 66
Pentium-166 166 66
Pentium-150 150 60
Pentium-133 133 66
Pentium-120 120 60
Pentium-100 100 66/50
Pentium-90 90 60
Pentium-75 75 50

Итак, появились процессоры с повышенной внешней частотой. Это привело к необходимости пересмотра некоторых концепций архитектурного развития персональных компьютеров, в частности структуры и топологии материнских плат, а также места и значения ранее разработанных локальных шин. Локальная шина PCI, прочно утвердившаяся в компьютерах с процессорами Pentium и Pentium Pro, в настоящее время стандартизована и функционирует, как правило, на частоте 33 МГц. Эффективная работа шины PCI обеспечивается соответствующими специализированными наборами микросхем - чипсетами. Эта шина успешно используется для связи с контроллерами мониторов, жестких дисков, локальных сетей, использующих высокоскоростные протоколы, и т. д. Однако для реализации скоростных возможностей Pentium потребовалось введение в архитектуру ПК с процессором Pentium еще одной шины в дополнение к шинам PCI и ISA. Эта дополнительная шина, названная в специальной технической литературе хост-шиной (host-bus), предназначена для скоростной передачи данных (64 разряда) и сигналов управления между процессором, ОЗУ и внешней кэш-памятью (L2). Кроме того, данная шина обеспечивает связь с интегрированным на материнской плате контроллером шины PCI. Часто эту шину называют шиной процессора (CPU Bus), системной шиной (System Bus) или шиной FSB (Front Side Bus).
Таким образом, с появлением хост-шины образовалась определенная иерархия шин в ПК: хост-шина (50/60/66 МГц), шина PCI (25/30/33 МГц), шина ISA (8 МГц). Это обеспечивает максимальную реализацию значительных потенциальных возможностей современных электронных компонентов и достижение высокой производительности компьютеров. Повышенная частота и разрядность передаваемых данных для процессора, ОЗУ, кэш-памяти (L2) и контроллера PCI позволили существенно увеличить скорость работы данных устройств и общую производительность современного ПК с процессором Pentium.

ПРИМЕЧАНИЕ При выборе процессора для ПК целесообразно учитывать не только внутреннюю частоту процессора Pentium, но и внешнюю - частоту шины. Данная частота влияет на пропускную способность шины и, соответственно, на общую производительность компьютера.

Необходимо учитывать, что снижение производительности компьютера за счет уменьшения внешней частоты процессора и шины может быть более значительным, чем рост общей производительности за счет увеличения внутренней частоты процессора.

Dual Independent Bus

Дальнейшее повышение производительности процессоров и ПК достигнуто внедрением архитектуры шины DIB (Dual Independent Bus - двойная независимая шина). Эта шина решает проблему ограничения пропускной способности шины между процессором и памятью. DIB увеличивает пропускную способность шины в три раза по сравнению с обычным решением. Архитектура DIB состоит из двух шин: шины кэш-памяти второго уровня (L2) и системной шины между процессором и основной памятью. Пропускная способность шины, связывающей процессор Pentium II и кэш L2, масштабируется в зависимости от частоты процессора. Так, шина кэш-памяти процессора версии 266 МГц работает с частотой 133 МГц, то есть в два раза быстрее, чем кэш L2 с фиксированной частотой 66 МГц процессора Pentium. С ростом внутренней частоты процессора увеличивается и разница.
Шина между процессором и ОЗУ еще более повышает производительность за счет поддержки одновременно выполняемых параллельных транзакций, в отличие от процессоров предыдущих поколений, в которых использовались одиночные последовательные транзакции.

AGP

AGP (Accelerated Graphics Port - ускоренный графический порт) - это новая 32-разрядная шина передачи информации в компьютере. Она обеспечивает передачу больших объемов видеоинформации (трехмерная графика, полноэкранное видео и т. п.) с высокой скоростью, ранее недоступной с помощью шины PCI. Интерфейс AGP оптимизирован с целью достижения максимальной производительности компьютеров с высокопроизводительными процессорами класса Pentium II, с высокими внутренними и внешними тактовыми частотами.
Тактовая частота AGP, определяющая скорость передачи информации, стандартно составляет 66 МГц, PCI - 33 МГц. Большинство современных материнских плат поддерживает для AGP кроме частоты 66 МГц частоту передачи данных 133 МГц: AGP 1.0 Compliance Interface поддерживает 1x и 2x Speed Mode, в режиме AGP 2х передача информации осуществляется по переднему и заднему фронтам тактовых импульсов, что позволяет фактически удвоить пропускную способность шины AGP. Ведутся работы по реализации режима 4x.
Частота AGP обычно связана с частотой шины процессора - хост-шины (FSB). Скорость передачи информации при тактовой частоте AGP, равной 66 МГц, в режиме 1х достигает 264 Мбайт/с, а в режиме 2х - 528 Мбайт/с (66 МГц ґ 4 байт ґ 2), традиционная PCI - 132 Мбайт/с (33 МГц ґ 4 байт = 132 Мбайт/с). При использовании высоких частот для хост-шины, превышающих стандартные для используемых чипсетов (overckloking), рабочая частота AGP и скорость передачи информации, как правило, возрастают.
Использование AGP решает проблему хранения текстурных карт, необходимых в формировании 3D-изображений. В настоящее время нередки случаи, когда для формирования качественного изображения текстурные карты требуют для своего хранения несколько десятков мегабайт, то есть значительно больше объема обычно устанавливаемой на видеоадаптере памяти. Формирование, хранение и последующая передача подобной информации из ОЗУ в видеоадаптер порождают значительные потоки информации, с которыми традиционная шина PCI часто не справляется. Кроме того, нередко шина PCI перегружена новыми высокоскоростными устройствами, подключаемыми к данной шине, например такими, как диски стандарта UltraDMA или сетевыми адаптерами с пропускной способностью 100 Мбайт/с. За счет исключения интенсивных потоков видеоданных с шины PCI увеличивается скорость работы устройств, подключенных к данной шине, и возрастают общая производительность и устойчивость всей системы компьютера.

Рисунок

Для полного раскрытия потенциальных возможностей шины AGP целесообразно использовать высокопроизводительные процессор и соответствующий чипсет, например такие, как Pentium II с частотой 400 МГц и i440BX с частотой хост-шины (FSB) 100 МГц.

USB, IEEE 1394

Спецификация периферийной шины USB разрабатывалась фирмами Compaq, DEC, IBM, Intel, Microsoft, NEC, Northern Telecom. Шина USB допускает внешнее подключение периферийных устройств к компьютеру посредством использования специальных портов в архитектуре современных компьютеров. Подключение осуществляется через специальные разъемы USB на материнской плате, выведенные на заднюю стенку корпуса компьютера, аналогично традиционным разъемам COM и LPT. Однако в отличие от них в USB используется шинная архитектура, позволяющая к каждому порту USB подключить последовательно до 127 разнообразных устройств, удовлетворяющих данной спецификации.
Шина USB обладает большой пропускной способностью, достигающей 12 Мбит/c, что почти в 100 раз превышает возможности COM-порта и в 20 раз - LPT. Это позволяет подключать большое число устройств без ухудшения качества их работы. В соответствии с принятыми спецификациями на USB, длина соединительного кабеля может достигать 5 метров.
Современные операционные системы легко распознают добавленные USB-устройства, реализуя технологию plug-and-play. В случае использования шины USB появляется возможность изменять конфигурацию компьютера включением или отключением внешних устройств без перезапуска системы. Кроме того, последовательное подключение устройств, характерное для USB, позволяет отказаться от большого количества соединительных кабелей, используемых в традиционных случаях.
Практически все современные материнские платы стандарта ATX, ориентированные на использование процессоров Pentium II, Celeron и Pentium III имеют в своем составе два порта USB. Программная поддержка осуществляется операционными системами Windows 95 OSR 2.1 и Windows 98, которые являются наиболее распространенными системами.
В настоящее время данный способ является стандартным способом подключения периферийных устройств к компьютеру. Существуют десятки устройств, удовлетворяющие данному стандарту. Многие фирмы осуществляют продажу и сопровождение устройств с данным интерфейсом.
Спецификация высокоскоростной последовательной шины IEEE 1394 (FireWire) предложена фирмой Sony. Как и USB, она обеспечивает внешнее подключение периферийных устройств к компьютеру. Скорость передачи данных - 100, 200, 400 Мбит/c, расстояние - до 4,5 м, количество устройств - до 63. Шина IEEE 1394 обеспечивает возможность переконфигурации без выключения компьютера.
Если шина USB ориентирована на устройства ввода, телекоммуникационное оборудование, принтеры, аудио/видео устройства, то IEEE 1394 - на высокоскоростные устройства, такие как устройства хранения данных и цифровую видеоэлектронику.
Способы подключения устройств, шины и их спецификации постоянно совершенствуются. В результате рабочие скорости передачи данных увеличиваются. Так, например, для USB 2 скорость достигла величины 480 Мбит/с. Новая спецификация IEEE 1394 предусматривает увеличение скорости до 800 Мбит/c и 1600 Мбит/c.

Перспективы

Корпорация Intel ведет разработку чипсетов, рабочие частоты которых - 133 МГц и более. Выпуск подобных наборов ожидается в 2000 г. Использование таких чипсетов, модулей RIMM, процессоров Pentium III, рассчитанных на частоту шины 133 МГц, позволит увеличить общую производительность компьютера.
Аналогичные исследования по разработке и выпуску высокопроизводительных чипсетов ведутся такими фирмами, как SiS и VIA.
Данные работы поддержаны фирмами-производителями материнских плат.
Фирмы IBM, Hewlett-Packard, Compaq предложили новый стандарт для шины PCI. Условное название для шины - PCIX, рабочая частота шины - 133 МГц. Это позволит увеличить скорость передачи данных до 1 Гбайт/с.

Локальная шина VESA, или VLB (VESA Local Bus), разработана Ассоциацией стандартов видеоэлектроники (Video Electronics Standart Assotiation, VESA), основанной в начале 1980-х гг. Необходимость создания VLB была вызвана тем, что передача видеоданных по шине ISA осуществлялась слишком медленно. Однако в настоящее время шина VLB не используется.

Локальная шина VLB представляет собой не новое устройство на материнской плате, а, скорее, расширение шины ISA для обмена видеоданными. Обмен информацией с CPU осуществляется под управлением контроллеров, расположенных на картах, устанавливаемых в слот VLB, напрямую в обход стандартной шины ввода/вывода. Шина VLB является 32-разрядной и работает на тактовой частоте процессора. Кроме того, передача данных по этой шине невозможна без использования линий шины ISA, по которым передаются уже известные сигналы адресов и управления.

Согласно спецификации VESA, тактовая частота локальной шины не должна превышать 40 МГц. Для большинства материнских плат, имеющих процессор с тактовой частотой 50 МГц, особых проблем обычно не возникает, причем, как правило, эти материнские платы оборудованы двумя слотами VLB.

Едва карта VLB успела закрепиться на рынке, как появилась уже новая шина PCI (Peripheral Component Interconnect). Она была разработана фирмой Intel для своего нового высокопроизводительного процессора Pentium. Шина РС1, в отличие от EISA и VLB, представляет собой не дальнейшее развитие шины ISA, а совершенно новую шину.

В современных материнских платах тактовая частота шины РС1 задается как половина тактовой частоты системной шины, т. е. при тактовой частоте системной шины 66 МГц шина РС1 будет работать на частоте 33 МГц, при частоте системной шины 100 МГц - 50 МГц.

Основополагающим принципом, положенным в основу шины РС1, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной РС1 и другими шинами (например, PCI to ISA Bridge).

Важной особенностью шины РС1 является то, что в ней реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. При таком подходе центральный процессор освобождается для выполнения других задач, пока происходит передача данных.

Применительно к устройствам IDE (например, винчестер, CD-ROM) Bus Mastering IDE означает наличие определенных схем на материнской плате, позволяющих осуществлять передачу данных с жесткого диска в обход CPU. Это особенно важно при использовании многозадачных операционных систем типа Windows.

В настоящее время шина РС1 стала стандартом де-факто среди шин ввода/вывода. Поэтому рассмотрим ее архитектуру (рис. 5.3) несколько подробнее.

В чем же секрет победного шествия шины РС1 в мире PC? Ответить можно так.

В шине РС1 используется совершенно отличный от шины ISA способ пе редачи данных. Этот способ, называемый "способом рукопожатия", заключается в том, что в системе определяются два устройства: инициатор (Iniciator) и исполнитель (Target). Когда инициирующее устройство готово к передаче, оно выставляет данные на линии данных и сопровождает их соответствующим сигналом (Indicator Ready), при этом исполняющее (подчиненное) устройство записывает данные в свои регистры и подает сигнал Target Ready, подтверждая запись данных и готовность к приему следующих. Установка всех сигналов, а также чтение/запись данных производятся строго в соответствии с тактовыми импульсами шины, частота которых равна 33 МГц (сигналу CLK).

Основное преимущество PCI-технологии заключается в относительной независимости отдельных компонентов системы. В соответствии с концепцией PCI, передачей пакета данных управляет не CPU, а включенный между ним и шиной PCI мост (Host Bridge Cashe/DRAM Controller). Процессор может продолжать работу и тогда, когда происходит запись данных в RAM (или их считывание) либо при обмене данными между двумя любыми компонентами системы.

В соответствии со спецификацией PCI 1.0 шина PCI- 32-разрядная, а PCI 2.0 64-разрядная. Таким образом, полоса пропускания шины составляет, соответственно, 33 МГц - (32 бит: 8) = 132 Мбайт/с и 33 МГц -

- (64 бит: 8) = 64 Мбайт/с.

Шина PCI универсальна. Поскольку системная шина и шина PCI соединены с помощью главного моста (Host-Bridge), то последняя является самостоятельным устройством и может использоваться независимо от типа CPU.

Рис. 5.3. Архитектура шины PCI

В соответствии со спецификацией РС1 5.0, ширина шины увеличена до 64 разрядов, слоты РС1 имеют дополнительные контакты, на которые подается напряжение 3,3 В. Большинство современных микросхем PC работает при таком напряжении.

Система РС1 использует принцип временного мультиплексирования, т. е. когда для передачи данных и адресов применяются одни и те же линии.

Важным свойством шины РС1 является ее интеллектуальность, т. е. она в состоянии распознавать аппаратные средства и анализировать конфигурации системы в соответствии с технологией Plug&Play, разработанной корпорацией Intel.

VLB SVGA-карта

Назначение контактов разъёма VLB

VESA local bus (VL-Bus или VLB) - тип локальной шины , разработанный ассоциацией VESA для персональных компьютеров. Шина VLB, по существу, является расширением внутренней шины микропроцессора Intel 80486 для связи с видеоадаптером и реже с контроллером HDD . Реальная скорость передачи данных по VLB - 80 МБайт/с (теоретически достижимая - 132 Мбайт/с).

История

Как выглядит слот шины

Слот VLB был расширением шины ISA. Поэтому карты для шины ISA могли вставляться в слот VLB и работать. Это делало разъем довольно длинным, и из-за этого аббревиатура VLB в шутку расшифрововалась как Very Long Bus (Очень Длинная Шина). Дополнительная часть VLB разъёма была окрашена в светло-коричневый цвет, для неё использовался тот же самый 116-контактный разъём, что и для MicroChannel. Физический разъём (слот, форм-фактор) шины PCI практически совпадает с дополнительной частью разъёма VLB, но расположен у заднего края системной платы и имеет другие назначения выводов.

Технические подробности

VLB была расширением шины ISA только для процессоров Intel 80486 и использовала его технические особенности. По сути, на контакты дополнительного слота выходили физические линии системной шины (процессор-память). Таким образом, процессор мог напрямую обращаться к буферам и памяти контроллеров, работающих на VLB. Для процессора это выглядело как дополнительные модули обычной памяти (общее адресное пространство). Таким образом, процессор работал с устройством на тех же скоростях, что и с памятью (в то время как ISA использовала тактовую частоту 8 МГц и 16-битную шину), что и обеспечивало высокое быстродействие.

В случае процессоров Pentium и NexGen функциональность шины VLB реализовывалась с помощью дополнительных мостов в чипсете, что приводило к катастрофическому падению производительности.

В шинах видеоконтроллеров (AGP , PCI-Express) данный подход применяется до сих пор («северный мост » - микросхема, связывающая процессор, память и графическую шину).

В новых процессорах Intel и AMD доступ к памяти и графической шине осуществляется напрямую через контроллер, встроенный непосредственно в процессор.

Шина VLB практически перестала применяться вместе с процессором i486 и базовой шиной ISA, электрические и временные параметры которых использовала и расширением которых была.

Шина PCI не была конструктивно совместима ни с одной из предшественниц, разработана как дальнейшее развитие шин MicroChannel и SBus), и принципиально отличается от VLB большим количеством возможностей как по автоматической настройке аппаратуры, так и по удобству её использования, например, наличием прямого доступа к памяти (direct memory access , DMA ) - способностью шины в фоновом режиме (без участия процессора) переносить данные между буфером внешней платы и оперативной памятью . Кроме того, шина PCI не была так сильно привязана к определённому типу центрального процессора и могла обслуживать большее число разъёмов. Это предопределило вытеснение шины VLB шиной PCI.

Платы VLB, за редким исключением, не могли работать только в слоте ISA.