Поверхность натяжения воды. SA

Силы притяжения между молекулами на поверхности жидкости удерживают их от движения за ее пределы.

Молекулы жидкости испытывают силы взаимного притяжения — на самом деле, именно благодаря этому жидкость моментально не улетучивается. На молекулы внутри жидкости силы притяжения других молекул действуют со всех сторон и поэтому взаимно уравновешивают друг друга. Молекулы же на поверхности жидкости не имеют соседей снаружи, и результирующая сила притяжения направлена внутрь жидкости. В итоге вся поверхность воды стремится стянуться под воздействием этих сил. По совокупности этот эффект приводит к формированию так называемой силы поверхностного натяжения, которая действует вдоль поверхности жидкости и приводит к образованию на ней подобия невидимой, тонкой и упругой пленки.

Одним из следствий эффекта поверхностного натяжения является то, что для увеличения площади поверхности жидкости — ее растяжения — нужно проделать механическую работу по преодолению сил поверхностного натяжения. Следовательно, если жидкость оставить в покое, она стремится принять форму, при которой площадь ее поверхности окажется минимальной. Такой формой, естественно, является сфера — вот почему дождевые капли в полете принимают почти сферическую форму (я говорю «почти», потому что в полете капли слегка вытягиваются из-за сопротивления воздуха). По этой же причине капли воды на кузове покрытого свежим воском автомобиля собираются в бусинки.

Силы поверхностного натяжения используются в промышленности — в частности, при отливке сферических форм, например ружейной дроби. Каплям расплавленного металла просто дают застывать на лету при падении с достаточной для этого высоты, и они сами застывают в форме шариков, прежде чем упадут в приемный контейнер.

Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни. Под воздействием ветра на поверхности океанов, морей и озер образуется рябь, и эта рябь представляет собой волны, в которых действующая вверх сила внутреннего давления воды уравновешивается действующей вниз силой поверхностного натяжения. Две эти силы чередуются, и на воде образуется рябь, подобно тому как за счет попеременного растяжения и сжатия образуется волна в струне музыкального инструмента.

Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение, и сил притяжения между молекулами жидкости и твердой поверхностью. В жидкой воде, например, силы поверхностного натяжения обусловлены водородными связями между молекулами (см. Химические связи). Поверхность стекла водой смачивается, поскольку в стекле содержится достаточно много атомов кислорода, и вода легко образует гидрогенные связи не только с другими молекулами воды, но и с атомами кислорода. Если же смазать поверхность стекла жиром, водородные связи с поверхностью образовываться не будут, и вода соберется в капельки под воздействием внутренних водородных связей, обусловливающих поверхностное натяжение.

В химической промышленности в воду часто добавляют специальные реагенты-смачиватели — сурфактанты , — не дающие воде собираться в капли на какой-либо поверхности. Их добавляют, например, в жидкие моющие средства для посудомоечных машин. Попадая в поверхностный слой воды, молекулы таких реагентов заметно ослабляют силы поверхностного натяжения, вода не собирается в капли и не оставляет на поверхности грязных крапин после высыхания (см.

Вологодский государственный педагогический университет

Курсовая работа по теме :

МЕТОДЫ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ.

Выполнил : Орехов Н.В.

Вологда 1998

Коэффициент поверхностного натяжения.

Поверхность жидкости, соприкасающейся с другой средой, например с ее собственным паром, с какой-либо другой жидкостью или с твердым телом (в частности, со стенками сосуда, в котором она содержится), находится в особых условиях по сравнению с остальной массой жидкости.

Возникают эти особые условия потому, что молекулы пограничного слоя жидкости, в отличие от молекул в ее глубине, окружены молекулами той же жидкости не со всех сторон. Часть «соседей» поверхностных молекул - это частицы второй среды, с которой жидкость граничит. Она, эта среда, может отличаться от жидкости как природой, так и плотностью частиц. Имея же разных соседей, молекулы поверхностного слоя и взаимодействуют с ними различным образом. Поэтому силы, действующие на каждую молекулу в этом слое, оказываются неуравновешенными: существует некоторая равнодействующая сила, направленная либо в сторону объема жидкости, либо в сторону объема граничащей с ней среды. Вследствие этого перемещение молекулы из поверхностного слоя в глубь жидкости или в глубь среды, с которой она граничит, сопровождается совершением работы (внутри жидкости молекулы, со всех сторон окруженные точно такими же частицами, находятся в равновесии, и их перемещение истребует затраты работы Величина и знак этой работы зависят от соотношения между силами взаимодействия молекул поверхностного слоя со «своими» же молекулами и с молекулами второй среды.

В случае, если жидкость граничит со своим собственным паром (насыщенным), т. е. в случае, когда мы имеем дело с одним веществом, сила, испытываемая молекулами поверхностного слоя, направлена внутрь жидкости. Это объясняется тем, что плотность молекул в жидкости много больше, чем в насыщенном паре над "жидкостью (вдали от критической температуры), и поэтому сила притяжения, испытываемая молекулой поверхностного слоя со стороны молекул жидкости, больше, чем со стороны молекул пара.

Отсюда следует, что, перемещаясь из поверхностного слоя внутрь жидкости, молекула совершает положительную работу. Наоборот, переход молекул из объема жидкости к поверхности сопровождается отрицательной работой, т. е. требует затраты внешней работы.

Представим себе, что по тем или иным причинам поверхность жидкости увеличивается (растягивается). Это значит, что некоторое количество молекул переходит из объема жидкости в поверхностный слой. Для этого, как мы только что видели, надо затратить внешнюю работу. Другими словами, увеличение поверхности жидкости сопровождается отрицательной работой. Наоборот, при сокращении поверхности совершается положительная работа.

Если при постоянной температуре обратимым путем изменить поверхность жидкости на бесконечно малую величину dS , то необходимая для этого работа

(1)

Знак минус указывает на то, что увеличение поверхности ( dS > 0) сопровождается отрицательной работой.

Коэффициент

является основной величиной, характеризую­щей свойства поверхности жидкости, и называется коэффициен том поверхностного натяжения ( > 0). Следовательно, коэффициент поверхностного натяжения измеряется работой, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

Очевидно, в системе СИ

имеет размерность .

Из сказанного ясно, что молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами, находящимися в объеме жидкости, потенциальной энергией. Обозначим ее

. Эта энергия, как всегда, измеряется работой, которую могут совершить молекулы поверхности, перемещаясь внутрь жидкости под действием сил притяжения со стороны молекул в объеме жидкости.

Поскольку энергия

обязана своим происхождением наличию поверхности жидкости, то она должна быть пропорциональна площади S поверхности жидкости:
(2)

Тогда изменение площади поверхности dS повлечет за. собой изменение потенциальной энергии

,

которое сопровождается работой

в полном соответствии с (1).

Если, как было указано, изменение поверхности S осуществляется при постоянной температуре, т. е. изотермически (и обратимо), то, как известно, потребная для этого работа равна изменению свободной энергии F поверхности:

.

(Если изменение поверхности жидкости произвести адиабатно, то ее температура изменится. Например, увеличение поверхности приведет к ее охлаждению.) Значит, избыточная потенциальная энергия поверхности жидкости, о которой говорилось выше, является свободной энергией поверхности и, следовательно,

(3)

т. е. коэффициент поверхностного натяжения жидкости можно определить как свободную энергию единицы площади этой поверхности.

Теперь ясно, в чем заключаются указанные выше особые условия, в которых находится поверхность жидкости. Они заключаются в том, что поверхность жидкости обладает избыточной по сравнению с остальной массой жидкости потенциальной (свободной) энергией. Посмотрим, к чему это приводит.

Известно, что всякая система при равновесии находится в том из возможных для нее состояний, при котором ее энергия имеет минимальное значение. Применительно к рассматриваемому случаю это означает, что жидкость в равновесии должна иметь минимально возможную поверхность. Это в свою очередь означает, что должны существовать силы, препятствующие увеличению поверхности жидкости, т. е. стремящиеся сократить эту поверхность.

Очевидно, что эти силы должны быть направлены вдоль самой поверхности, по касательной к ней. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения.

Нужно, однако, помнить, что первопричиной возникновения сил поверхностного натяжения являются силы, испытываемые молекулами поверхностного слоя, направленные внутрь жидкости, а в некоторых случаях внутрь той среды, с которой она граничит, т. е. перпендикулярно к поверхности.

Для разрыва, или, как говорят, для раздела поверхности необходимо приложить внешние силы, параллельные к поверхности и перпендикулярные к той линии, вдоль которой предполагается разрыв (раздел).

Это особенно ясно видно из опытов с тонкими пленками жидкости. Некоторые Жидкости, как, например, мыльная вода, сапонин и др., обладают свойством образовывать тонкие пленки. Если, например, опустить проволочную рамку, одна из сторон которой подвижна (рис. 1), в мыльный раствор, то вся она затянется пленкой жидкости. Силы поверхностного натяжения принуждают пленку сокращаться, и подвижная перекладина АВ вслед за пленкой перемещается вверх. Чтобы сохранить ее в равновесии, к перекладине нужно приложить силу Р в виде груза (сюда входит и вес самой перекладины).

Таким образом, сила поверхностного натяжения, действующая в пленке, перпендикулярна к линии АВ , которая в данном случае и является линией раздела. Такие же силы действуют, конечно, и на другие стороны рамки. Но здесь они уравновешиваются силами притяжения жидкости к.веществу жесткой рамки.

Описанный опыт может быть использован для определения численного значения коэффициента поверхностного натяжения жидкости, образующей пленку. Действительно, поверхностная сила f , с учетом того, что пленка имеет две поверхности (ведь пленка на самом деле представляет собой тонкий слой жидкости), равна при равновесии весу груза Р :

Если под действием этой силы перекладина, увлекаемая пленкой, переместилась на расстояние dh из положения АВ , та работа, совершенная силой, равна.

Наиболее характерным свойством жидкости, отличающим ее от газа, является то, что на границе с газом жидкость образует свободную поверхность, наличие которой приводит к возникновению явлений особого рода, называемых поверхностными. Своим возникновением они обязаны особым физическим условиям, в которых находятся молекулы вблизи свободной поверхности.

На каждую молекулу жидкости действуют силы притяжения со стороны окружающих ее молекул, расположенных от нее на расстоянии порядка 10 -9 м (радиус молекулярного действия). На молекулу M 1 , расположенную внутри жидкости (рис. 1), действуют силы со стороны таких же молекул, и равнодействующая этих сил близка к нулю.

Для молекул M 2 равнодействующие сил отличны от нуля и направлены внутрь жидкости, перпендикулярно к ее поверхности. Таким образом, все молекулы жидкости, находящиеся в поверхностном слое, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость (молекулярное давление) .

Чтобы переместить молекулу M 3 , расположенную непосредственно под поверхностным слоем, на поверхность, необходимо совершить работу против сил молекулярного давления. Следовательно, молекулы поверхностного слоя жидкости обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эту энергию называют поверхностной энергией .

Очевидно, что величина поверхностной энергии тем больше, чем больше площадь свободной поверхности. Пусть площадь свободной поверхности изменилась на ΔS , при этом поверхностная энергия изменилась на \(~\Delta W_p = \sigma \cdot \Delta S\), где σ - коэффициент поверхностного натяжения. Так как для этого изменения необходимо совершить работу

\(~A = \Delta W_p ,\) то \(~A = \sigma \cdot \Delta S .\)

Отсюда \(~\sigma = \dfrac{A}{\Delta S}\) .

Единицей коэффициента поверхностного натяжения в СИ является джоуль на квадратный метр (Дж/м 2).

- величина, численно равная работе, совершенной молекулярными силами при изменении площади свободной поверхности жидкости на 1 м 2 при постоянной температуре.

Так как любая система, предоставленная сама себе, стремится занять такое положение, в котором ее потенциальная энергия наименьшая, то жидкость обнаруживает стремление к сокращению свободной поверхности. Поверхностный слой жидкости ведет себя подобно растянутой резиновой пленке, т.е. все время стремится сократить площадь своей поверхности до минимальных размеров, возможных при данном объеме.

Например, капля жидкости в состоянии невесомости имеет сферическую форму.

Поверхностное натяжение

Свойство поверхности жидкости сокращаться можно истолковать как существование сил, стремящихся сократить эту поверхность. Молекула M 1 (рис. 2), расположенная на поверхности жидкости, взаимодействует не только с молекулами, находящимися внутри жидкости, но и с молекулами, находящимися на поверхности жидкости, расположенными в пределах сферы молекулярного действия. Для молекулы M 1 равнодействующая \(~\vec R\) молекулярных сил, направленных вдоль свободной поверхности жидкости, равна нулю, а для молекулы M 2 , расположенной у границы поверхности жидкости, \(~\vec R \ne 0\) и \(~\vec R\) направлена по нормали к границам свободной поверхности и по касательной к самой поверхности жидкости .

Равнодействующая сил, действующих на все молекулы, находящиеся на границе свободной поверхности, и есть сила поверхностного натяжения . В целом она действует так, что стремится сократить поверхность жидкости.

Можно предположить, что сила поверхностного натяжения \(~\vec F\) прямо пропорциональна длине l границы поверхностного слоя жидкости, ведь на всех участках поверхностного слоя жидкости молекулы находятся в одинаковых условиях:

\(~F \sim l .\)

Действительно, рассмотрим вертикальный прямоугольный каркас (рис. 3, а, б), подвижная сторона которого уравновешена. После извлечения рамки из раствора мыльной пленки подвижная часть перемещается из положения 1 в положение 2 . Учитывая, что пленка представляет собой тонкий слой жидкости и имеет две свободные поверхности, найдем работу, совершаемую при перемещении поперечины на расстояние h = a 1 ⋅ a 2: A = 2F⋅h , где F - сила, действующая на каркас со стороны каждого поверхностного слоя. С другой стороны, \(~A = \sigma \cdot \Delta S = \sigma \cdot 2l \cdot h\).

Следовательно, \(~2F \cdot h = \sigma \cdot 2l \cdot h \Rightarrow F = \sigma \cdot l\), откуда \(~\sigma = \dfrac Fl\).

Согласно этой формуле единицей коэффициента поверхностного натяжения в СИ является ньютон на метр (Н/м).

Коэффициент поверхностного натяжения σ численно равен силе поверхностного натяжения, действующей на единицу длины границы свободной поверхности жидкости. Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. При увеличении температуры он уменьшается.

  • При критической температуре, когда исчезает различие между жидкостью и паром, σ = 0.

Примеси в основном уменьшают (некоторые увеличивают) коэффициент поверхностного натяжения.

Таким образом, поверхностный слой жидкости представляет собой как бы эластичную растянутую пленку, охватывающую всю жидкость и стремящуюся собрать ее в одну «каплю». Такая модель (эластичная растянутая пленка) позволяет определять направление сил поверхностного натяжения. Например, если пленка под действием внешних сил растягивается, то сила поверхностного натяжения будет направлена вдоль поверхности жидкости против растяжения. Однако это состояние существенно отличается от натяжения упругой резиновой пленки. Упругая пленка растягивается за счет увеличения расстояния между частицами, при этом сила натяжения возрастает, при растяжении же жидкой пленки расстояние между частицами не меняется, а увеличение поверхности достигается в результате перехода молекул из толщи жидкости в поверхностный слой. Поэтому при увеличении поверхности жидкости сила поверхностного натяжения не изменяется (она не зависит от площади поверхности).

См. также

  1. Кикоин А.К. О силах поверхностного натяжения // Квант. - 1983. - № 12. - С. 27-28

Смачивание

В случае соприкосновения с твердым телом силы сцепления молекул жидкости с молекулами твердого тела начинают играть существенную роль. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекул жидкости с молекулами твердого тела.

Смачивание - явление, возникающее вследствие взаимодействия молекул жидкости с молекулами твердых тел. Если силы притяжения между молекулами жидкости и твердого тела больше сил притяжения между молекулами жидкости, то жидкость называют смачивающей ; если силы притяжения жидкости и твердого тела меньше сил притяжения между молекулами жидкости, то жидкость называют несмачивающей это тело.

Одна и та же жидкость может быть смачивающей и несмачивающей по отношению к разным телам. Так, вода смачивает стекло и не смачивает жирную поверхность, ртуть не смачивает стекло, а смачивает медь.

Смачивание или несмачивание жидкостью стенок сосуда, в котором она находится, влияет на форму свободной поверхности жидкости в сосуде. Если большое количество жидкости налито в сосуд, то форма ее поверхности определяется силой тяжести, которая обеспечивает плоскую и горизонтальную поверхность. Однако у самых стенок явление смачивания и несмачивания приводят к искривлению поверхности жидкости, так называемые краевые эффекты .

Количественной характеристикой краевых эффектов служит краевой угол θ - угол между плоскостью касательной к поверхности жидкости и поверхностью твердого тела. Внутри краевого угла всегда находится жидкость (рис. 4, а, б). При смачивании он будет острым (рис. 4, а), а при несмачивании – тупым (рис. 4, б). В школьном курсе физики рассматривают только полное смачивание (θ = 0º) или полное несмачивание (θ = 180º).

Силы, связанные с наличием поверхностного натяжения и направленные по касательной к поверхности жидкости, в случае выпуклой поверхности дают результирующую, направленную внутрь жидкости (рис. 5, а). В случае вогнутой поверхности результирующая сила направлена, наоборот, в сторону газа, граничащего с жидкостью (рис. 5, б).

Если смачивающая жидкость находится на открытой поверхности твердого тела (рис. 6, а), то происходит ее растекание по этой поверхности. Если на открытой поверхности твердого тела находится несмачивающая жидкость, то она принимает форму, близкую к шаровой (рис. 6, б).

Смачивание имеет важное значение как в быту, так и в промышленности. Хорошее смачивание необходимо при крашении, стирке, обработке фотоматериалов, нанесении лакокрасочных покрытий, при склеивании материалов, при пайке, во флотационных процессах (обогащение руд ценной породой). И наоборот, при сооружении гидроизоляционных устройств необходимы материалы, не смачиваемые водой.

Капиллярные явления

Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском . У смачивающей жидкости образуется вогнутый мениск (рис. 7, а), а у несмачивающей - выпуклый (рис. 7, б). Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться.

Силы поверхностного натяжения создают дополнительное (лапласово) давление под искривленной поверхностью жидкости.

Если поверхность жидкости вогнутая , то сила поверхностного натяжения направлена из жидкости (рис. 8, а), и давление под вогнутой поверхностью жидкости меньше, чем под плоской, на \(~p = \dfrac{2 \sigma }{R}\). Если поверхность жидкости выпуклая , то сила поверхностного натяжения направлена внутрь жидкости (рис. 8, б), и давление под выпуклой поверхностью жидкости больше, чем под плоской, на ту же величину.

Рис. 8
  • Эта формула является частным случаем формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:
\(~p = \sigma \cdot \left(\dfrac{1}{R_1} + \dfrac{1}{R_2} \right),\)

где R 1 и R 2 - радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Для цилиндрической поверхности (R 1 = l ; R 2 = ∞) избыточное давление \(~p = \dfrac{\sigma}{R}\) .

Если поместить узкую трубку (капилляр ) одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается (если жидкость смачивающая) или опускается (если жидкость несмачивающая) (рис. 9, а, б), так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет.

Явления изменения высоты уровня жидкости в капиллярах по сравнению с уровнем жидкости в широких сосудах называются капиллярными явлениями .

Жидкость в капилляре поднимается или опускается на такую высоту h , при которой сила гидростатического давления столба жидкости уравновешивается силой избыточного давления, т.е.

\(~\dfrac{2 \sigma}{R} = \rho \cdot g \cdot h .\)

Откуда \(~h = \dfrac{2 \sigma}{\rho \cdot g \cdot R}\). Если смачивание не полное θ ≠ 0 (θ ≠ 180°), то, как показывают расчеты, \(~h = \dfrac{2 \sigma}{\rho \cdot g \cdot R} \cdot \cos \theta\).

Капиллярные явления весьма распространены. Поднятие воды в почве, система кровеносных сосудов в легких, корневая система у растений, фитиль и промокательная бумага - капиллярные системы.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 178-184.

вода

Рис. 12.1

воздух

Лекция 12. Поверхностное натяжение жидкостей. Осмос

В этой лекции рассмотрим некоторые свойства жидкостей, связанные с поведением молекул в жидкой фазе. В отличие от практически свободных и быстрых молекул газа молекулы жидкости расположены вплотную друг к другу и перемещаются довольно медленно.

12.1. Поверхностное натяжение жидкостей

Упругими свойствами обладают не только твердые тела, но и поверхность жидкости. Каждый видел, как растягивается мыльная пленка при выдувании пузырей. Силы поверхностного натяжения, возникающие в мыльной пленке, удерживают воздух в пузыре, подобно тому, как растянувшаяся резиновая камера удерживает воздух в футбольном мяче.

Поверхностное натяжение возникает на границе раздела фаз, например, жидкой и газообразной или жидкой и твердой, и обусловлено тем, что молекулы поверхностного слоя жидкости испытывают разную силу притяжения снаружи и изнутри. Поверхностное на-

Тяжение хорошо наблюдать на примере капли воды, где

жидкость ведет себя так, как будто она помещена в эла-

стичную оболочку. Здесь молекулы поверхностного слоя воды притягиваются к своим внутренним соседям (другим молекулам воды) сильнее, чем к внешним молекулам воздуха, рис. 12.1. Другой пример – пленка бензина на воде. Здесь молекулы бензина притягиваются друг к

другу слабее, чем к молекулам воды, в результате чего бензин растекается по воде очень тонкой пленкой.

Поверхностное натяжение можно определить как бесконечно малую (элементарную) работу δ A , которую нужно совершить для увеличения площади поверхности жидкости на бесконечно малую величину dS при постоянной тем-

определяет упругие свойства поверхности жидкости. Чем больше поверхностное натяжение, тем труднее растягивается пленка жидкости.

Поверхностное натяжение зависит от температуры . Например, для воды с ростом температуры поверхностное натяжение уменьшается.

Сила поверхностного натяжения F пропорциональна длине контура l на поверхности, к которому приложена, и лежит в плоскости, касательной к по-

верхности жидкости,

F = σ l.

Жидкость может смачивать или не смачивать поверхность, на которую она налита. Если молекулы жидкости притягиваются друг к другу слабее, чем к

0 ≤ θ < π /2

π/2 < θ ≤ π

молекулам поверхности, происходит смачивание (рис. 12.2, а), в противном случае – несмачивание (рис. 12.2, б).

Угол, образованный поверхностью, куда налита жидкость, и касательной к поверхности жидкости, называется краевым углом θ . Предельный случай, когда θ = 0, называется полным смачиванием, а когда θ = π , – полным несмачиванием.

Силы поверхностного натяжения искривляют поверхность жидкости и вызывают дополнительное давление, которое определяется формулой Лапласа

P = σ

и действует в сторону вогнутости поверхности. Здесь R 1 и R 2 − радиусы кри-

визны двух взаимно перпендикулярных сечений поверхности жидкости.

Если поверхность цилиндрическая (R 1 = R , R 2 → ∞ ), то

σ ,

(12.3)′

если сферическая (R 1 = R 2 = R ), то

(12.3)″

Искривленная поверхность жидкости называется мениском . Поверхностное натяжение проявляется и в случае поднятия жидкости в

капиллярных трубках (рис. 12.3, а). Например, в капиллярах стеблей травянистых растений за счет смачивания вода поднимается на несколько сантиметров. Высота поднятия жидкости с плотностью ρ в капиллярной трубке1 радиуса r

Капиллярные явления играют важную роль в природе и сельскохозяйственной практике. Как уже отмечалось, вода по капиллярам поднимается в стеб-

1 Мениск в капиллярах сферический и дополнительное давление определяется формулой (12.3)″ . Дополнительное давление как бы затягивает жидкость наверх. Это давление уравновешивается гидростатическим давлением столбика жидкости высоты h : P = ρ gh . Учитывая, что радиус кривизны поверхности R связан с радиусом капилляра r соотношением R = r /cosθ , получим формулу (12.4).

ли травянистых растений. По капиллярам почвы вода поднимается из глубинных в поверхностные слои. Уменьшая диаметр почвенных капилляров путем уплотнения почвы, можно усилить приток воды к поверхности, то есть к зоне испарения, и этим ускорить высушивание почвы. Наоборот, разрыхляя поверхность почвы и создавая тем самым прерывистость в системе почвенных капилляров, можно задержать приток воды к зоне испарения и замедлить высушивание почвы. На этом основаны агротехнические приемы регулирования водного режима почвы: прикатка и боронование.

Следует также отметить, что пчелы извлекают нектар из цветка посредством очень тонкой капиллярной трубки, находящейся внутри пчелиного хоботка.

Если пузырек воздуха попадет в кровеносный сосуд небольшого диаметра, то из-за сил поверхностного натяжения может наступить закупорка сосуда (пузырек как бы прилипает к стенкам сосуда и перекрывает его). Это явление называется газовой эмболией . Поэтому при инъекциях нельзя допускать попадания в иглу шприца пузырьков воздуха. Для этого перед инъекцией всегда сбрасывают немного жидкости из шприца.

Кроме того, листья и плоды многих растений не смачиваются водой (покрытывосковымналетом), что предохраняет их отзагниваниявдождливыепериоды.

Оперение водоплавающих птиц предохраняется от намокания следующим образом. Плотное переплетение перьевых и пуховых бородок образует упорядоченную структуру. Жирные выделения расположенной у основания хвоста копчиковой железы, наносимые клювом на перья, сохраняют эту структуру и создают водоотталкивающую (несмачивающуюся) поверхность. Водонепроницаемости также способствуют многочисленные пузырьки воздуха, заключенные в тончайших полостях слоев оперения.

В заключение отметим, что для уменьшения поверхностного натяжения воды используют различные поверхностно-активные вещества (ПАВ), например, мыло. Вода не смачивает (и не отмывает) жирную поверхность, а мыльный раствор – смачивает (и отмывает).

12.2. Осмос и осмотическое давление

Это явление похоже на диффузию, однако, одно существенное отличие заставляет рассматривать его отдельно. Для протекания этого явления необходима перегородка (оболочка), обладающая избирательной проницаемостью , то есть пропускающая одни молекулы и не пропускающая другие.

Пусть водный раствор какого-либо вещества, на-

пример, сахара, отделен от растворителя, например, воды,

р-р сахара

полупроницаемой перегородкой, через которую молекулы

Р осм

воды проходить могут, а сахара – нет (рис. 12.4). Приме-

рами полупроницаемых перегородок могут служить обо-

лочка растительной или животной клетки, защитная обо-

лочка, покрывающая жаберные лепестки рыб, стенки

желчного пузыря, кишечная ткань и т.д.

Явление перехода молекул чистого растворителя через полупроницаемую перегородку в область, занятую раствором, называется осмосом .

В результате этого возникает разность давлений между раствором и чистым растворителем. Когда она достигнет определенного значения, осмос прекращается. Разность давлений, при которой осмос прекращается, называется

осмотическим давлением.

Природа осмотического давления будет понятна, если растворенное вещество рассматривать как идеальный газ с молярной концентрацией n р (для слабых растворов).

Р осм = n рRT ,

где n р = ν /V – молярная концентрация раствора в моль/м3 . Это уравнение полностью совпадает с уравнением Менделеева – Клапейрона для газов, только вместо молекул газа здесь молекулы или ионы растворенного вещества.

Осмотическое давление легко измерить. Для этого

можно провести опыт с поднятием раствора сахара в труб-

ке, закрытой снизу полупроницаемой перегородкой и по-

груженной в воду, как показано на рис. 12.5. Из-за осмоса

молекулы воды будут проходить через перегородку, уро-

вень в трубке начнет расти и остановится, когда гидроста-

тическое давление столба жидкости в трубке не даст моле-

кулам воды проходить в раствор (другими словами, осмо-

перегородка

тическое давление в растворе уравновешивается гидроста-

тическим давлением столба раствора высоты h ). Высота

подъема раствора в трубке служит мерой осмотического давления

Р осм = ρ рgh ,

где ρ р – плотность раствора (для слабых растворов примерно равна плотности чистого растворителя). Формула (12.6) – экспериментальная формула для определения осмотического давления.

Осмотический эффект играет исключительно важную роль в жизни бактерий, грибов, растений и животных, так как благодаря осмосу происходит водный обмен клетки с внеклеточной жидкостью. Оболочки живых клеток представляют собой полупроницаемые перегородки, – они проницаемы для молекул воды и непроницаемы для молекул сложных органических соединений, образующихся внутри клетки в процессе ее жизнедеятельности. Благодаря этому внутри клетки образуется раствор с концентрацией несколько превышающей концентрацию внеклеточного раствора, и возникает осмотическое давление, растягивающее клеточную мембрану и делающее клетку упругой, как надутый резиновый мяч. Это явление называется тургором клеток. Поэтому ткани растений и животных обладают хорошей упругостью и сохраняют свою форму. Падение осмотического давления в клетках, например, при обезвоживании организма, приводит к их коллапсу (схлопыванию). А обессоливание организма, наоборот, может привести к набуханию и разрыву клеток (осмотический шок).

Если слегка увядшие растения положить в ванну с холодной водой, то благодаря осмосу, они «оживут». Вода будет проходить через мембраны «подсохших» клеток и вернет им прежнюю форму. Осмотическое давление в расти-

тельных клетках, окруженных водой, может быть весьма значительным и достигать нескольких атмосфер. Именно благодаря осмосу вода из почвы попадает в клетки листьев очень высоких деревьев. Так, эвкалипты и секвойи достигают высоты 100-120 м. Концентрация клеточного раствора в листьях таких растений достаточно высокая, значит, и высокое осмотическое давление (12.5), следовательно, и большая высота подъема воды (12.6).

Если же, растение или животное находятся в растворе с концентрацией, превышающей клеточную концентрацию, то вода идет из клеток во внешний раствор. Например, когда мы делаем варенье и засыпаем фрукты сахаром, образуется сироп – раствор сахара в воде, вышедшей из клеток фруктов. Аналогичный процесс происходит и при засолке рыбы или овощей.

Благодаря осмосу речным рыбам не нужно пить, – вода поступает в ткани не только через желудок, но и через всю внешнюю поверхность рыбы. Так что пресноводным рыбам нужно постоянно выводить избыток воды. А у морских рыб, кроме акул и скатов, концентрация клеточного раствора меньше концентрации солей в морской воде, и они вынуждены пить воду, усваивая ее через желудок. Море в прямом смысле «высасывает» воду из тканей рыб. Кстати, именно осмотическим высасыванием воды из клеток обусловлено чувство жажды, возникающее после приема соленой пищи или питья морской воды.

Кроме того, с ростом концентрации раствора (а, значит, и осмотического давления) уменьшается температура его замерзания. По этой причине почки растений и ткани некоторых животных зимой полностью не промерзают (некоторые виды рыб выдерживают полное промерзание водоема, не зарываясь в ил). Морская вода не замерзает при температурах до –2 ° С и ниже в зависимости от солености.

Напротив, температура кипения раствора с ростом концентрации (а, значит, и осмотического давления) увеличивается. Поэтому температура кипения соленой воды при атмосферном давлении выше 100 ° С.

Причины изменения температуры плавления и кипения воды в зависимости от давления рассмотрены в предыдущей лекции.

Вопросы к лекции 12

1. Как возникает поверхностное натяжение жидкостей? Приведите примеры.

2. Как определяется коэффициент поверхностного натяжения жидкости, и от чего он зависит?

3. Поясните, в каком случае жидкость смачивает поверхность, с которой соприкасается, а в каком – нет.

4. При взятии крови для анализа используется тонкая капиллярная трубка. Почему кровь «сама» поднимается по капилляру? Почему такого эффекта практически не наблюдается, если трубка не достаточно тонкая?

5. Почему при инъекциях нельзя допускать попадания в иглу шприца пузырьков воздуха?

6. Приведите примеры капиллярных явлений в жизни растений и животных.

7. Что такое осмос? Как найти осмотическое давление?

8. Приведите примеры осмотического эффекта в живых организмах.

9. Объясните механизм подъема воды в листья высоких деревьев.

10. Почему мы хотим пить после приема соленой пищи? Почему от сладкой пищи чувство жажды гораздо меньше?