Характеристики шины vlb. Сейчас существуют два основных стандарта универсальных локальных шин: VLB и PCI

Типы и характеристики стандартных шин, используемых в настоящее время, приведены в таблице 10.1.

Характеристики стандартных шин.

Тип/назначение Разрядность Тактовая частота (МГц) Пропускная способность (Мб/с)
ISA/общая
EISA/общая
VLB (VESA)
VLB2/локальная
PCI/ввод/вывод 33, 66 120, 133
SBUS/ввод/вывод 32, 64 20, 25 80, 100
MBUS/процессор-память 125 (400)
XDBUS/процессор-память 310 (400)
AGP/локальная графическая
PCI-X

Системная шина ISA (Industry Standard Architecture) впервые стала применяться в ПК IBM PC/AT на базе процессора 12826. Данная шина позволяет передавать параллельно 16 бит данных и обращаться к 16 Мбайт системной памяти. В современных компьютерах используется как шина ввода/вывода для организации связи с медленно действующими периферийными устройствами. С появлением процессоров i386, i486 системная шина ISA стала "узким местом" ПК на их основе.

Системная шина EISA (Extended Industry Standard Architecture), разработанная в 1988 году, обеспечивает адресное пространство в 4 Гбайта, 32-битовую передачу данных, тактируется частотой около 8 Мгц, имеет максимальную теоретическую скорость передачи данных 33 Мбайт/с и совместима с шиной ISA.

Шина МСА также обеспечивает 32-разрядную передачу данных, тактируется частотой 10 МГц, но не совместима с шиной ISA и используется только в компьютерах компании IBM.

Локальная шина VESA-Local-Bus (VLB) предназначалась для увеличения быстродействия видеоадаптеров и контроллеров дисковых накопителей. Она подключалась непосредственно к процессору i486, и только к нему. После появления процессора Pentium ассоциация VESA приступила к работе над новым стандартом VLB версии 2, который предусматривает использование 64-битовой шины данных и увеличение количества разъемов расширения. Ожидаемая скорость передачи данных - до 400 Мбайт/сек.

Шина PCI (Peripheral Component Interconnection) в первом варианте использовалась как локальная шина и предназначалась для тех же целей, что и предыдущая шина (VLB). В действующем втором варианте шина PCI относится к шинам ввода/вывода. В данном случае соединение шин центрального процессора и PCI осуществляется через так называемую РС1-перемычку, мост PCI или контроллер, которые согласуют шину центрального процессора с шиной PCI. Это означает, что PCI может работать с процессорами различных платформ и поколений.

Шина VME приобрела большую популярность как шина ввода/вывода в рабочих станциях и серверах на базе RISC-процессоров. Эта шина высоко стандартизирована, имеет несколько версий этого стандарта: VME32, VME64.

В однопроцессорных и многопроцессорных рабочих станциях и серверах на основе микропроцессоров архитектуры SPARC одновременно используются несколько типов шин: Sbus, Mbus иXDBus , причем шина Sbus применяется в качестве шины ввода/вывода, a Mbus и XDBus - в качестве шин для объединения большого числа процессоров и памяти.

Локальная шина AGP (Accelerated Graphics Port) первоначально предназначалась исключительно для графики и была способна повысить производительность видео-приложений. Для использования технологии AGP необходим набор микросхем Intel 440LX, который позволяет разгрузить сравнительно "узкую" (133 Мб/с) шину PCI от жадного на ресурсы видеоадаптера и подключить последний к специально предназна­ченной для него более "широкой" (528 Мб/с) шине AGP. На долю же PCI остаются более медленные устройства, функционирование которых существенно улучшается благодаря отключению от шины более быстродействующих устройств, то и дело создающих "пробки" в стремительном потоке данных. Набор 440LX не только имеет поддержку AGP, но и допускает использование в машинах на базе Pentium II быстродействующей памяти SDRAM, которая обеспечивает более высокую производительность, чем ОЗУ типа EDO DRAM, применяемое в машинах Pentium II со старым набором микросхем.

PCI-X - расширение шины PCI, которая работает на тактовой частоте 133 МГц. Шина PCI-X обладает обратной совместимостью с PCI, требует нового набора микросхем Intel 450 NX, кроме того, благодаря новой схеме обмена регистр-регистр достигается пропускная способность 1,06 Гб/с (8 Гбит/с), что обеспечивает почти шестикратный выигрыш в производительности. В первую очередь PCI-X предназначена для подключения высокопроизводительных адаптеров типа Gigabit Ethernet, Ultra 3SCSI и Fibre Channel (FC-AL).

Внутримашинный системный интерфейс - система связи и сопряжения узлов и блоков ЭВМ между собой представляет совокупность электрических линий связи (проводов), схем сопряжения с компонентами компьютера, протоколов (алгоритмов) передачи и преобразования сигналов.

Существуют два варианта организации внутримашинного интерфейса:

многосвязный интерфейс, где каждый блок ПК связан с прочими блоками своими локальными проводами; многосвязный интерфейс применяется, как правило, только в простейших бытовых ПК;

односвязный интерфейс, где все блоки ПК связаны друг с другом через общую или системную шину.

В подавляющем большинстве современных ПК в качестве системного интерфейса используется системная шина. Функциональными характеристиками системной шины являются: количество обслуживаемых ею устройств и ее пропускная способность, т.е. максимально возможная скорость передачи информации. Пропускная способность шины зависит от ее разрядности (есть шины 8-, 16-, 32- и 64-разрядные) и тактовой частоты, на которой шина работает.

В качестве системной шины в разных ПК использовались и могут использоваться:

шины расширений шины общего назначения, позволяющие подключать большое число самых разнообразных устройств;

локальные шины специализирующиеся на обслуживании небольшого количества устройств определенного класса.

Сравнительные технические характеристики некоторых шин приведены в таблице 5.1.

Таблица 5.1 - Основные характеристики шин

Шины расширений.

1. Шина Multibus1 имеет две модификации: PC/XT bus (Persona) Computer eXtended Technology - ПК с расширенной технологией) и PC/AT bus (PC Advanced Technology - ПК с усовершенствованной технологией).

2. Шина PC/XT bus - 8-разрядная шина данных и 20-разрядная шина адреса, рассчитанная на тактовую частоту 4,77 МГц, имеет 4 линии для аппаратных прерываний и 4 канала для прямого доступа в память (каналы DMA - Direct Memory Access). Шина адреса ограничивала адресное пространство микропроцессора величиной 1 Мбайт. Используется с МП 8086,8088.

3. Шина PC/AT bus -16-разрядная шина данных и 24-разрядная шина адреса, рабочая тактовая частота до 8 МГц, но может использоваться и МП с тактовой частотой 16 МГц, так как контроллер шины может делить частоту пополам; имеет 7 линий для аппаратных прерываний и 4 канала DMA.

4. Шина ISA (Industry Standard Architecture - архитектура промышленного стандарта) - 16-разрядная шина данных и 24-разрядная шина адреса, рабочая тактовая частота 8 МГц, но может использоваться и МП с тактовой частотой 50 МГц (коэффициент деления увеличен). По сравнению с шинами PC/XT и PC/AT увеличено количество линий аппаратных прерываний с 7 до 15 и каналов прямого доступа к памяти DMA с 7 до 11. Благодаря 24-разрядной шине адреса адресное пространство увеличилось с 1 до 16 Мбайт. Теоретическая пропускная способность шины данных равна 16 Мбайт/с, реально около 4-5 Мбайт/с, ввиду ряда особенностей ее использования.

5. Шина EISA (Extended ISA) - 32-разрядная шина данных и 32-разрядная шина адреса, создана в 1989 г. Адресное пространство шины 4 Гбайта, пропускная способность 33 Мбайт/с, причем скорость обмена по каналу МП - КЭШ - ОП определяется параметрами микросхем памяти, увеличено число разъемов расширений (теоретически может подключаться до 15 устройств, практически - до 10). Улучшена система прерываний, шина EISA обеспечивает автоматическое конфигурирование системы и управление DMA, полностью совместима с шиной ISA (есть разъем для подключения ISA), шина поддерживает многопроцессорную архитектуру вычислительных систем. Шина EISA применяется в скоростных ПК, сетевых серверах и рабочих станциях.

6. Шина МСА (Micro Channel Architecture) -32-разрядная шина, созданная фирмой IBM в 1987 г. для машин PS/2, пропускная способность 76 Мбайт/с, рабочая частота 10-20 МГц. По прочим характеристикам близка к шине EISA, но не совместима ни с ISA, ни с EISA. Поскольку ЭВМ PS/2 не получили широкого распространения, в первую очередь ввиду отсутствия наработанного обилия прикладных программ, шина МСА также используется не очень широко .

Локальные шины VLB и PCI

Два основных стандарта универсальных локальных шин - VLB и PCI.

1. Шина VLB (VESA Local Bus -локальная шина VESA) - называют шиной VESA. Шина VLB, no существу, является расширением внутренней шины МП для связи с видеоадаптером и реже с винчестером, платами Multimedia, сетевым адаптером. Разрядность шины - 32 бита (возможен 64-разрядный вариант). Реальная скорость передачи данных по VLB - 80 Мбайт/с (теоретически достижимая -132 Мбайт/с).

Недостатки шины:

– рассчитана на работу с МП 80386, 80486, не адаптирована для процессоров Pentium, Pentium Pro, Power PC;

– жесткая зависимость от тактовой частоты МП (каждая шина VLB рассчитана только на конкретную частоту);

– малое количество подключаемых устройств - к шине VLB (только четыре устройства);

– отсутствует арбитраж шины - могут быть конфликты между подключаемыми устройствами.

2. Шина PCI. (Peripheral Component Interconnect - соединение внешних устройств). Шина PCI является более универсальной, чем VLB, имеет свой адаптер, позволяющий ей настраиваться на работу с любым МП, она позволяет подключать 10 устройств самой разной конфигурации с возможностью автоконфигурирования, имеет свой "арбитраж", средства управления передачей данных.

Разрядность PCI - 32 бита с возможностью расширения до 64 бит, при частоте шины 33 МГц теоретическая пропускная способность 132 Мбайт/с, а в 64-битовом варианте -263 Мбайт/с (реальная вдвое ниже).

Варианты конфигурации систем с шинами VLB и PCI показаны на рисунке 5.1 и рисунке 5.2 соответсвенно. Использование в ПК шин VLB и PCI возможно только при наличии соответствующей VLB- или PCI-материнской платы.

Рисунок 5.1 - Конфигурация системы с шиной VLB

Рисунок 5.2 - Конфигурация системы с шиной PCI

Для подключения шины PCI к другим шинам применяются специальные аппаратные средства - мосты шины PCI (PCI Bridge). Главный мост (Host Bridge) используется для подключения PCI к системной шине (шине процессора или процессоров). Одноранговый мост (Peer-to-Peer Bridge) используется для соединения двух шин PCI. Две и более шины PCI применяются в серверных платформах - дополнительные шины PCI позволяют увеличить количество подключаемых устройств. Таким образом, совокупность мостов, расположенных вокруг шины PCI, выполняет маршрутизацию (routing) обращений по всем связанным шинам. В общем случае считается, что устройство с конкретным адресом может присутствовать только на одной из шин данного компьютера, а на каком именно, "знают" запрограммированные мосты.

Основные возможности шины.

1. Синхронный 32-х или 64-х разрядный обмен данными. При этом для уменьшения числа контактов используется мультиплексирование, то есть адрес и данные передаются по одним и тем же линиям.

2. Поддержка 5V и 3.3V логики. Разъемы для 5 и 3.3V плат различаются расположением ключей (cуществуют универсальные платы, поддерживающие оба напряжения, но частота 66MHz поддерживается только 3.3V логикой).

3. Частота работы шины 33MHz или 66MHz (в версии 2.1) позволяет обеспечить широкий диапазон пропускных способностей (с использованием пакетного режима):

– 132 МВ/с при 32-bit/33MHz;

– 264 MB/с при 32-bit/66MHz;

– 264 MB/с при 64-bit/33MHz;

– 528 МВ/с при 64-bit/66MHz.

4. Для работы шины на частоте 66MHz необходимо, чтобы все периферийные устройства работали на этой частоте.

5. Полная поддержка multiply bus master (например, несколько контроллеров жестких дисков могут одновременно работать на шине).

6. Поддержка write-back и write-through кэша.

7. Автоматическое конфигурирование карт расширения при включении питания.

8. Спецификация шины позволяет комбинировать до восьми функций на одной карте (например, видео + звук и т.д.).

9. Шина позволяет устанавливать до 5 слотов расширения, однако возможно использование моста PCI-PCI для увеличения количества карт расширения.

10. PCI-устройства оборудованы таймером, который используется для определения максимального промежутка времени, в течении которого устройство может занимать шину.

11. Шина поддерживает метод передачи данных, называемый "linear burst" (метод линейных пакетов). Этот метод предполагает, что пакет информации считывается (или записывается) в непрерывное пространство памяти, то есть адрес автоматически увеличивается для следующего байта. Естественным образом при этом увеличивается скорость передачи собственно данных за счет уменьшения числа передаваемых адресов.

Спецификация шины PCI определяет три типа ресурсов - два обычных (диапазон памяти и диапазон ввода/вывода) и configuration space - "конфигурационное пространство". Автоконфигурирование устройств (выбор адресов, запросов прерываний) поддерживается средствами BIOS и ориентировано на технологию Microsoft/Intel Plug and Play (PnP) PC architecture .

Стандарт PCI определяет для каждого слота конфигурационное пространство размером до 256 восьмибитных регистров, не приписанных ни к пространству памяти, ни к пространству ввода/вывода. Доступ к ним осуществляется по специальным циклам шины Configuration Read и Configuration Write, вырабатываемым контроллером при обращении процессора к регистрам контроллера шины PCI, расположенным в его пространстве ввода/вывода. Дополнительная информация о шине PCI приведено в приложении Е.

Интерфейс PCI Express (3GIO).

Аббревиатура 3GIO расшифровывается как «3-е поколение шины ввода-вывода»(Third Generation Input/Output Interconnection) .

Масштабируемость производительности достигается через повышение частоты и добавление линий к шине. PCI Express призвана обеспечить высокую пропускную способность на контакт с низким количеством служебной информации и низкими задержками. Поддерживаются несколько виртуальных каналов на один физический.

Система адресации полностью совместима со спецификацией PCI, что позволяет подключать устройства PCI к новой шине. Без изменений остался механизм автоматического конфигурирования устройств (Plug-and-Play). Данные пересылаются пакетами по 8 или 10 бит (в последнем случае два бита предназначены для поддержки механизма контроля четности и исправления ошибок).

Спецификация интерфейса PCI Express предусматривает несколько уровней взаимодействия и протоколов:

– физический;

– данных (Data Link);

– транзакций (транспортный);

– приложений и драйверов;

– конфигурационный.

Физической основой PCI Express являются последовательные низковольтные дифференциальные линии связи, по одной паре для передачи и приема данных. Масштабируемость шины достигается кратным (1, 2, 4, 8, 16, 32) увеличением числа линий. Между участниками обмена данными по шине PCI Express устанавливается выделенный канал связи, ширина которого и тактовая частота обговариваются устройствами в процессе инициализации канала. Здесь же происходит представление данных в формате 8 или 10 бит. При необходимости 2 бита используются для контроля за целостностью данных. Тем самым реализуется концепция обмена данными «точка - точка».

Теоретически полоса пропускания самого узкого канала достигает 2,5 Гбит/с в каждом направлении.

Система адресации и команд включает три стандартных поля, совместимых с интерфейсом РСI (область памяти, адрес ввода-вывода, инициализации и конфигурирования), а также дополнительное поле сообщений (Message).

Интерфейсная шина AGP

Выделенная для потока видеоданных интерфейсную шину - AGP (Accelerated Graphics Port - ускоренный графический порт) (рисунок 5.3) .

Рисунок 5.3– Структурная схема графического ускорителя с AGP

Преимуществом новой шины стала ее высокая пропускная способность. Если шина ISA позволяла передавать до 5,5 Мбайт/с, VLB -до 130 Мбайт/с (однако при этом чрезмерно загружала центральный процессор), а PCI до 133 Мбайт/с, то шина AGP теоретически имеет пиковую пропускную способность до 2132 Мбайт/с (в режиме передачи 32-разрядных слов).

Интерфейс AGP обеспечивает прямое соединение между графической подсистемой и оперативной памятью. Таким образом, выполняются требования вывода ЗD-графики в режиме реального времени и, кроме того, более эффективно используется память буфера кадра, тем самым увеличивается скорость обработки 3D-графики. Шина AGP соединяет графическую подсистему с контроллером системной памяти, разделяя доступ с центральным процессором компьютера. Через AGP возможно подключение графических плат.

Основными особенности AGP, влияющими на производительность:

Шина способна передавать два (AGP2x), четыре (AGP4x) или восемь (AGP8x) блоков данных за один цикл;

Устранена мультиплексированность линий адреса и данных (в PCI для удешевления материнских плат адрес и данные передаются по одним и тем же линиям);

Конвейеризация операций чтения/записи позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций.

Шина AGP работает в двух основных режимах - DIME (Direct Memory Execute) и DMA (Direct Memory Access). В режиме DMA основной памятью считается память на карте. Текстуры могут храниться в системной памяти, но перед использованием копируются в локальную память видеокарты. Обмен ведется большими последовательными пакетами данных.

В режиме Execute локальная и системная память для видеокарты логически равноправны. Текстуры не копируются в локальную память, а выбираются непосредственно из системной памяти. Таким образом, приходится передавать сравнительно небольшие случайно расположенные куски. Поскольку системная память требуется и другим устройствам, она выделяется динамически, блоками по 4 Кбайт. Поэтому для обеспечения приемлемого быстродействия предусмотрен специальный механизм, отображающий последовательные адреса на реальные адреса блоков в системной памяти.

Шина AGP поддерживает все стандартные операции шины PCI, поэтому поток данных по ней можно представить как смесь чередующихся AGP и РСI-операций чтения/записи. Операции шины AGP являются раздельными (split). Это означает, что запрос на проведение операции отделен от собственно пересылки данных.

Новая спецификация - AGP Pro. Основное отличие этого интерфейса заключается в возможности управления энергопитанием. С этой целью в разъем AGP Pro добавлены новые линии.

Интерфейс AGP Pro предназначен для графических станций. Двукратное увеличение пропускной способности достигнуто за счет повышения тактовой частоты шины до 66 МГц и применения нового уровня сигналов 0,8 В (в AGP 2.0 использовался уровень 1,5 В). Тем самым при сохранении основных параметров интерфейса повышена пропускная способность шины до 2132 Мбайт/с.

Повышенная пропускная способность порта AGP обеспечивается следующими тремя факторами:

– конвейеризацией операций обращения к памяти;

– сдвоенными передачами данных;

– демультиплексированием шин адреса и данных.

Интерфейс SCSI

Системный интерфейс малых компьютеров SCSI (Small Computer System Interface) был стандартизован ANSI в 1986 году. Интерфейс предназначен для соединения устройств различных классов - памяти прямого и последовательного доступа, CD-ROM, оптических дисков однократной и многократной записи, устройств автоматической смены носителей информации, принтеров, сканеров, коммуникационных устройств и процессоров. Устройством SCSI - SCSI Device - называется как хост-адаптер, связывающий шину SCSI с какой-либо внутренней шиной компьютера, так и контроллер целевого устройства - target controller, с помощью которого оно подключается к шине SCSI. К одному контроллеру может подключаться несколько периферийных устройств, по отношению к которым контроллер может быть как внутренним, так и внешним.

По физической реализации интерфейс является 8-битной параллельной шиной с тактовой частотой 5 МГц. Шина допускает подключение до 8 устройств, скорость передачи данных в первоначальной версии достигала 5 Мбайт/с.

Спецификация - SCSI-2, расширяющая возможности шины как в количественных, так и в качественных показателях. Тактовая частота шины Fast SCSI-2 достигает 10 МГц, а Ultra SCSI-2 - 20 МГц. Разрядность данных может быть увеличена до 16 бит - эта версия называется Wide SCSI-2 (широкий), а 8-битную версию назвали Narrow (узкий). 16-битная шина позволяет увеличивать число устройств до 16. Стандарт SCSI-2 определяет и 32-битную версию интерфейса. Комбинации тактовой частоты и разрядности обеспечивают широкий диапазон пропускной способности, достигающей 40 Мбайт/с для реальной версии Ultra Wide SCSI-2.

Спецификация SCSI-2 определяет систему команд, которая включает набор базовых команд для всех периферийных устройств, и специфических команд для периферии различных классов.

Спецификация - SCSI-3 - дальнейшее развитие стандарта, направленное на увеличение количества подключаемых устройств. SCSI-3 существует в виде широкого спектра документов, определяющих отдельные стороны интерфейса.

Современные устройства с интерфейсом SCSI выпускаются в соответствии со стандартом SCSI-2 или SCSI-3. Стандарт SCSI-3 предполагает различные варианты протокольного и физического уровня интерфейса, включающие как параллельные, так и последовательные шины.

Для параллельных шин скорость передачи данных определяется частотой передач, измеряемой в миллионах передач за секунду - MT/sec (Mega Transfer/sec) и разрядностью.

Скорость передачи данных для различных вариантов параллельной шины приведена в таблице 5.2.

Таблица 5.2 - Скорость передачи данных по параллельной шине SCSI

Последовательный интерфейс FCAL (Fibre Channel Arbitrated Loop - арбитражное кольцо волоконного канала) по реализации ближе к интерфейсам локальных сетей. Этот интерфейс, известный также и как Fibre Channel SCSI, может иметь как электрическую (коаксиальный кабель), так и оптоволоконную реализацию. В обоих случаях частота 800 МГц обеспечивает скорость передачи данных 100 Мбайт/с. Медный кабель допускает длину шины до 30 м, оптический - до 10 км. Здесь используется иной протокольный и физический уровни интерфейса и имеется возможность подключения к шине до 126 устройств (а не 8 или 16, как для параллельного интерфейса). Двухпортовые устройства могут достигать пиковой скорости обмена до 200 Мбайт/с.

Физический интерфейс.

Физически 8-битный интерфейс SCSI представляет собой шину, состоящую из 25 сигнальных цепей. Для обеспечения помехозащищенности каждая сигнальная цепь имеет свой отдельный обратный провод. Каждое устройство SCSI, подключенное к шине, должно иметь свой уникальный адрес, назначаемый при конфигурировании. Для 8-битной шины диапазон значений адреса 0-7, для 16-битной - 0-15. Адрес задается предварительной установкой переключателей или джамперов, для хост-адаптера возможно и программное конфигурирование. Дополнительная информация представлена в приложении Ж.

Интерфейс HyperTransport

Высокоскоростная шина ввода-вывода HyperTransport (HT) предназначена для использования в компьютерных системах, прежде всего в качестве внутренней локальной шины. В сравнении с шиной PCI интерфейс HyperTransport позволяет снизить число проводников на системной плате, устранить задержки, связанные с монополизацией шины устройствами с низкой производительностью, уменьшить энергопотребление и повысить пропускную способность.

Шина HyperTransport организована на различных уровнях:

На физическом уровне шина представлена линиями данных,
управления, тактовыми, а также контроллерами и стандартными электрическими сигналами;

На уровне передачи данных определяется порядок инициализации и конфигурирования устройств, установления и прекращения сеанса связи, циклического контроля адекватности данных, выделения пакетов для передачи данных;

На уровне протокола определены команды выделения виртуальных каналов связи, правила управления потоком данных;

На уровне транзакций команды протокола конкретизированы в управляющие сигналы, например чтения или записи;

На уровне сессии определены правила управления энергопотреблением и прочие команды общего характера.

Физические устройства в рамках интерфейса HyperTransport подразделяются на несколько типов:

Cave («пещера») - оконечное устройство на двунаправленном канале связи;

Tunnel («туннель») - устройство на двунаправленном канале связи, установленное «на проходе» (но не мост);

Bridge («мост») - устройство на двунаправленных каналах связи, один из которых считается главным и связывает устройство с контроллером шины (Host), а другие соединяют с прочими устройствами.

Топологию совокупности устройств на шине HyperTransport можно построить в виде цепочки или дерева. Фирма AMD предлагает сторонним производителям готовые схемы с поддержкой шины Hyper Transport: туннель «HT - AGP» (AMD-8151), хаб каналов ввода-вывода (AMD-8111) и туннель «HT - PCI-X» (AMD-8131). Таким образом обеспечивается совместимость с прочими, в том числе морально устаревшими, интерфейсами и плавный переход на новую шину. Что касается схемотехнической организации шины HyperTransport, то надо отметить ее масштабируемость в зависимости от решаемых задач. В минимальной конфигурации (ширина канала 2 бит, на каждый бит требуется две физические линии) потребуется 24 контакта (8 для данных + 4 для тактовых сигналов + 4 для линий управления + 2 сигнальных + 4 заземления + 1 питания + 1 сброса), в максимальной конфигурации (ширина канала 32 бит) речь идет уже о 197 выводах. Для сравнения укажем, что спецификация PCI 2.1 предусматривает 84 вывода, a PCI-X - 150 выводов.

Физически технология HyperTransport основыванется на улучшенной версии низковольтных дифференциальных сигналов (Low Voltage Differential Signaling, LVDS ). Для всех линий (данных, управления, тактовых) используются шины с дифференциальным сопротивлением 100 Ом. Уровень сигнала составляет 1,2 В (в отличие от 2,5 В, установленных спецификацией IEEE LVDS). Благодаря этому длина шины может достигать 24 дюйма (около 61 см) при полосе пропускания на одной линии до 800 Мбит/с. Необходимо заметить, что спецификация HyperTransport предусматривает разделение «восходящих» (Upstream) и «нисходящих» (Downstream) потоков данных (асинхронность). Такой подход обеспечивает возможность существенного увеличения, тактовых частот по сравнению с существующими архитектурами, поскольку каждый сигнал LVDS функционирует в пределах своей физической линии. Кроме того, пакет, объединяющий адреса, команды и данные, всегда кратен 32 бит. Поэтому обеспечивается его безошибочная передача по масштабируемым каналам шириной от 2 до 32 бит. Это позволяет применять единую технологию HyperTransport для соединения потребителей ресурсов шины различной производительности: процессор, оперативная память, видеоконтроллер, низкоскоростные устройства ввода-вывода, используя в каждом случае минимально необходимое число линий. Пиковая пропускная способность соединения Hyper Transport достигает 12,8 Гбайт/с (по 6,4 Гбайт/с на нисходящий и восходящий каналы шириной 32 бит при частоте 800 МГц и передаче данных по фронту и спаду сигнала). Для сравнения укажем, что пиковая пропускная способность системной шины (200 МГц) процессора AMD Athlon составляет 2,128 Гбайт/с. Важной особенностью технологии HyperTransport является совместимость с устройствами PCI на уровне протоколов.

Интерфейс USB

Шина USB (Universal Serial Bus– универсальная последовательная шина) является промышленным стандартом расширения архитектуры персональных компьютеров (РС), ориентированным на интеграцию с телефонией и устройствами бытовой электроники.

Архитектура USB определяется критериями:

– легко реализуемое расширение периферии РС;

– дешевое решение, поддерживающее скорость передачи до 12 Мбит/с (версия 1.0) и до 480 Мбит/с (версия 2.0);

– полная поддержка в реальном времени передачи аудио- и видеоданных;

– гибкость протокола смешанной передачи, изохронных данных и асинхронных сообщений;

– интеграция с выпускаемыми устройствами;

– доступность в РС всех конфигураций и размеров;

– создание новых классов устройств, расширяющих РС;

– простота кабельной системы и подключений;

– скрытие подробностей подключения от конечного пользователя;

– самоидентифицирующиеся ПУ, автоматическая связь устройств с драйверами и конфигурирование;

– возможность динамического подключения ПУ и конфигурирования.

С середины 1996 года выпускаются РС со встроенным контроллером USB, реализуемым чипсетом.

Таблица 5.3 - Схема цоколевки

Таблица 5.4 - Названия и функциональные назначения выводов


Рисунок 5.4 - Топология шины USB

В вершине этой пирамиды, в корневом узле, находится хост-устройство , а все остальные узлы являются функциональными устройствами (функциями ) или соединителями (хабами ).

Система USB состоит из трех основных частей:

– USB хост-устройство;

– USB разветвитель (хаб);

– USB устройство (функция).

USB хост-устройство (устройство – хозяин интерфейса) – это главное устройство в любой USB системе, которое организует все передачи данных и команд по шине интерфейса .

Интерфейс USB в компьютерной системе множественного доступа реализуется хост-контроллером, который является комбинацией аппаратных средств и программного обеспечения.

Хост-контроллер находится в корневом узле главной системы (на материнской плате) компьютера, и обеспечивает, как правило, две точки присоединения.

Основные функции хост-контроллера:

– определение подключения и удаления USB устройств;

– управление потоком команд между корневым узлом и USB устройством;

Локальная шина VLB

Локальная шина стандарта VLB (VESA Local Bus, VESA – Video Equipment Standart Association – Ассоциация стандартов видеооборудования) разработана в 1992 году. Главным недостатком шины VLB является невозможность её использования с процессорами, пришедшими на замену МП 80486 или существующими параллельно с ним (Alpha, PowerPC и др.).

Шины ввода-вывода ISA, MCA, EISA имеют низкую производительность, обусловленную их местом в структуре PC. Современные приложения (особенно графические) требуют существенного повышения пропускной способности, которое могут обеспечить современные процессоры. Одним из решений проблемы повышения пропускной способности было применение в качестве шины подключения периферийных устройств локальной шины процессора 80486. Шину процессора использовали как место подключения встроенной периферии системной платы (контроллер дисков, графического адаптера).

VLB - стандартизованная 32-битная локальная шина, практически представляющая собой сигналы системной шины процессора 486, выведенные на дополнительные разъемы системной платы. Шина сильно ориентирована на 486 процессор, хотя возможно ее использование и с процессорами класса 386. Для процессоров Pentium была принята спецификация 2.0, в которой разрядность шины данных увеличена до 64, но она распространения не получила. Аппаратные преобразователи шины новых процессоров в шину VLB, будучи искусственными "наростами" на шиннной архитектуре, не прижились, и VLB дальнейшего развития не получила.

Конструктивно VLB-слот аналогичен 16-битному обычному MCA-слоту, но является расширением системного слота шины ISA-16, EISA или MCA, располагаясь позади него вблизи от процессора. Из-за ограниченной нагрузочной способности шины процессора больше трех слотов VLB на системной плате не устанавливают. Максимальная тактовая частота шины - 66 МГц, хотя надежнее шина работает на частоте 33 МГц. При этом декларируется пиковая пропускная способность 132 Мбайт/с (33 МГц x 4 байта), но она достигается только внутри пакетного цикла во время передач данных. Реально в пакетном цикле передача 4 x 4 = 16 байт данных требует 5 тактов шины, так что даже в пакетном режиме пропускная способность составляет 105.6 Мбайт/с, а в обычном режиме (такт на фазу адреса и такт на фазу данных) - всего 66 Мбайт/с, хотя это и значительно больше, чем у ISA. Жесткие требования к временным характеристикам процессорной шины при большой нагрузке (в т. ч. и микросхемами внешнего кэша) могут привести к неустойчивой работе: все три VLB-слота могут использоваться только на частоте 40 МГц, при нагруженной системной плате на 50 МГц может работать только один слот. Шина в принципе допускает и применение активных (Bus-Master) адаптеров, но арбитраж запросов возлагается на сами адаптеры. Обычно шина допускает установку не более двух Bus-Master адаптеров, один из которых устанавливается в "Master"- слот.

Шину VLB обычно использовали для подключения графического адаптера и контроллера дисков. Адаптеры локальных сетей для VLB практически не встречаются. Иногда встречаются системные платы, у которых в описании указано, что они имеют встроенный графический и дисковый адаптер с шиной VLB, но самих слотов VLB нет. Это означает, что на плате установлены микросхемы указанных адаптеров, предназначенные для подключения к шине VLB. Такая неявная шина по производительности, естественно, не уступает шине с явными слотами. С точки зрения надежности и совместимости это даже лучше, поскольку проблемы совместимости карт и системных плат для шины VLB стоят особенно остро.

Accelerated Graphics Port (AGP)

Стандарт на AGP (Accelerated Graphics Port - ускоренный графический порт) был разработан фирмой Intel с для того, чтобы не меняя сложившийся стандарт на шину PCI, ускорить ввод/вывод данных в видеокарту и, кроме этого, увеличить производительность компьютера при обработке трехмерных изображений без установки дорогостоящих двухпроцессорных видеокарт с большими объемами как видеопамяти, так и памяти под текстуры, z-буфер и т.п.. Этот стандарт был поддержан большим количеством фирм, входящих в AGP Implementors Forum, организацию, созданную на добровольной основе для внедрения этого стандарта. Поэтому развитие AGP было довольно стремительным. Стартовая версия стандарта - AGP 1.0.

Конструктивное исполнение представляет собой отдельный слот с питанием 3.3 V, напоминающий слот PCI, но на самом деле никак с ним несовместимом. Обычная видеокарта не может быть установлена в этот слот и наооборот.

Скорость передачи данных до 532 Мбайт/с, обусловлена частотой шины AGP до 132 МГц, отсутствием мультиплексирования шины адреса и данных (на PCI по одним и тем же физическим линиям сначала выдается адрес, а потом данные). AGP имеет частоту шины 66 МГц и ту же разрядность и в стандартном режиме (точнее - режим "1x") может пропустить 266 Мбайт/с. Для повышения пропускной способности шины AGP в стандарт заложена возможность передавать данные, используя как передний так и задний фронт синхросигнала - режим 2x. В режиме 2x пропускная способность 532 Мбайт/с. При достижении частоты шины в 100 МГц скорость обмена возрастет до 800 Мбайт/с.

Кроме "классического" способа адресации, как на PCI, в AGP может использоваться режим sideband addressing, называемый "адресацией по боковой полосе". При этом используются специальные, отсутствующие в PCI, сигналы SBA (SideBand Addressing). В отличие от шины PCI на AGP присутствует конвейрная обработка данных.

Основная обработка трехмерных изображений выполняется в основной памяти компьютера как центральным процессором, так и процессором видеокарты. Механизм доступа процессора видеокарты к памяти получил название DIrect Memory Execute (DIME - непосредственное выполнение в памяти). Следует упомянуть, что сейчас не все видеокарты стандарта AGP поддерживают этот механизм. Некоторые карты пока имеют только механизм, аналогичный bus master на шине PCI. Не следует путать этот принцип с UMA, который используется в недорогих видеокартах, размещенных, как правило, на материнской плате. Основные отличия: . Область основной памяти компьютера, которая может использоваться AGP картой (ее также называют "AGP память"), не заменяет память экрана. В

UMA основная память используется как память экрана, а AGP память лишь дополняет ее. . Пропускная способность памяти в UMA видеокарте меньше, чем для шины

PCI. . Для вычислений текстур привлекаются только центральный процессор и процессор видеокарты. . Центральный процессор записывает данные для видеокарты непосредственно в область обычной памяти, доступ к которой получает также и процессор видеокарты. . Выполняются только операции чтения/записи в память. Нет арбитража на шине (AGP порт всегда один) и временных затрат на него

Обычная память (даже SDRAM) существенно дешевле, чем видеопамять для графических карт.

В декабре 1997 года фирма Intel выпустила предварительную версию стандарта AGP 2.0, а в мае 1998 года окончательный вариант. Основные отличия от предыдущей версии: . Скорость передачи может быть увеличена еще в два раза по сравнению с

1.0 - этот режим получил название "4x" - и достигать значения 1064

Мбайт/с. . Скорость передачи адреса в режиме "адресации по боковой полосе" также может быть увеличена еще в два раза. Добавлен механизм "быстрой записи" Fast Write (FW). Основная идея - запись данных/команд управления непосредственно в AGP устройство, минуя промежуточное хранение данных в основной памяти. Для устранения возможных ошибок в стандарт на шину введен новый сигнал WBF# (Write

Buffer Full - буфер записи полон). Если сигнал активен, то режим FW невозможен.

В июле 1998 года Intel выпустила версию 0.9 спецификации на AGP Pro, существенно отличающейся конструктивно от AGP 2.0. Краткая суть отличий в следующем: . Изменен разъем AGP - добавлены выводы по краям существующего разъема для подключения дополнительных цепей питания 12V и 3.3V . Совместимость с AGP 2.0 только снизу вверх - платы с AGP 2.0 можно устанавливать в слот AGP Pro, но не наооборот. . AGP Pro предназначена только для систем с ATX форм-фактором. . Поскольку карте AGP Pro разрешено потребление до 110 Wt (!!), высота элементов на плате (с учетом возможных элементов охлаждения) может достигать 55 мм, поэтому два соседних слота PCI должны оставаться свободными. Кроме этого, два соседних слота PCI могут использоваться платой AGP Pro для своих целей. . С точки зрения схемотехники новая спецификация ничего не добавляет, кроме специальных выводов, сообщающих системе о потреблении платы AGP Pro.

AGP быстро прижился в обыкновенных настольных системах из-за своей дешевизны и скорости, а видеокарты на AGP почти вытеснили обычные PCI- видеокарты.


Компоненты внутри РС взаимодействуют друг с другом различными способами. Большинство внутренних компонентов, включая процессор, кэш, память, карты расширения и запоминающие устройства взаимодействуют друг с другом с помощью одной или нескольких шин (buses).

Шина в компьютерах представляет собой канал, по которому передается информация между двумя или несколькими устройствами (обычно шина, соединяющая только два устройства, называется портом - port). Шина обычно имеет точки доступа, или места, к которым может подключиться устройство для превращения себя в часть шины, а устройства на шине могут посылать информацию другим устройствам и принимать информацию от других устройств. Понятие шины является довольно общим как для "внутренности" РС, так и для внешнего мира. Например, телефонное соединение в доме можно считать шиной: информация передается по проводникам в доме и можно подключиться к "шине", установив телефонную розетку, подключив к ней телефон и подняв трубку телефона. Все телефоны на шине могут разделять (share) информацию, т.е. речь.

Этот материал посвящен шинам современных РС. Вначале обсуждаются шины и их характеристики, а затем подробно рассматриваются наиболее распространенные в мире РС шины ввода-вывода (Input/Output bus), называемые также шинами расширения (expansion buses).

Функции и характеристики шин

Шины РС являются основными "трактами" данных на материнской плате. Главной из них является системная шина (system bus), которая соединяет процессор и основную память RAM. Раньше эта шина называлась локальной, а в современных РС называется передней шиной (Front Side Bus - FSB). Характеристики системной шины определяются процессором; современная системная шина имеет ширину 64 бита и работает на частоте 66, 100 или 133 МГц. Сигналы такой высокой частоты создают электрические помехи и ставят другие проблемы. Следовательно, частоту необходимо снизить, чтобы данные достигали карт расширения (expansion card), или адаптеров (adapters), и других более удаленных компонентов.

Однако первые РС имели только одну шину, которая была общей для процессора, памяти RAM и компонентов ввода-вывода. Процессоры первого и второго поколений работали с низкой частотой синхронизации и все компоненты системы могли поддерживать такую частоту. В частности, такая архитектура позволяла расширять емкость RAM с помощью карт расширения.

В 1987 г. разработчики компании Compaq решили отделить системную шину от шины ввода-вывода с тем, чтобы они могли работать с различной скоростью. С тех пор такая многошинная архитектура стала промышленным стандартом. Более того, современные РС имеют несколько шин ввода-вывода.

Иерархия шин

В РС имеется иерархическая организация различных шин. Большинство современных РС имеет, как минимум, четыре шины. Иерархия шин объясняется тем, что каждая шина все больше отдаляется от процессора; каждая шина подключается к находящемуся выше ее уровню, объединяя различные компоненты РС. Каждая шина обычно медленнее шины, находящейся выше ее (по очевидной причине - процессор является наиболее быстрым устройством в РС):

  • Шина внутреннего кэша: Это самая быстрая шина, которая соединяет процессор и внутренний L1-кэш.
  • Системная шина: Это системная шина второго уровня, которая соединяет подсистему памяти с чипсетом и процессором. В некоторых системах шины процессора и памяти представляют собой одно и то же. Эта шина до 1998 г. работала со скоростью (частотой синхронизации) 66 МГц, а затем она была повышена до 100 МГц и даже 133 МГц. В процессорах Pentium II и выше реализована архитектура с двойной независимой шиной (Dual Independent Bus - DIB) - единственная системная шина заменена на две независимые шины. Одна из них предназначена для доступа к основной памяти и называется передней шиной (frontside bus), а вторая - для доступа к L2-кэшу и называется задней шиной (backside bus). Наличие двух шин повышает производительность РС, так как процессор может одновременно получать данные с обеих шин. В материнских платах и чипсетах пятого поколения L2-кэш подключен к стандартной шине памяти. Отметим, что системную шину называют также основной шиной (main bus), шиной процессора (processor bus), шиной памяти (memory bus) и даже локальной шиной (local bus).
  • Локальная шина ввода-вывода: Эта быстродействующая шина ввода-вывода используется для подключения быстрых периферийных устройств к памяти, чипсету и процессору. Такую шину используют видеокарты, дисковые накопители и сетевые интерфейсы. Наиболее распространенными локальными шинами ввода-вывода являются VESA Local Bus (VLB) и шина Peripheral Component Interconnect (PCI).
  • Стандартная шина ввода-вывода: К рассмотренным трем шинам подключается "заслуженная" стандартная шина ввода-вывода, которая применяется для медленных периферийных устройств (мышь, модем, звуковые карты и др.), а также для совместимости со старыми устройствами. Почти во всех современных РС такой шиной является шина ISA (Industry Standard Architecture - стандартная промышленная архитектура).
  • Универсальная последовательная шина (Universal Serial Bus - USB), позволяющая подключать до 127 медленных периферийных устройств с использованием хаба (hub) или шлейфного соединения (daisy-chaining) устройств.
  • Скоростная последовательная шина IEEE 1394 (FireWire) , предназначенная для подключения к РС цифровых камер, принтеров, телевизоров и других устройств, требующих исключительно высокой пропускной способности.

Несколько шин ввода-вывода, соединяющие различные периферийные устройства с процессором, подключаются к системной шине с помощью моста (bridge), реализованного в чипсете. Системный чипсет управляет всеми шинами и обеспечивает, что каждое устройство в системе правильно взаимодействует с каждым другим устройством.

В новых РС есть дополнительная "шина", которая специально предназначена только для графического взаимодействия. Фактически это не шина, а порт - ускоренный графический порт (Accelerated Graphics Port - AGP). Различие между шиной и портом заключается в том, что шина обычно рассчитана на разделение носителя несколькими устройствами, а порт предназначен только для двух устройств.

Как показано ранее, шины ввода-вывода фактически являются расширением системной шины. На материнской плате системная шина заканчивается микросхемой чипсета, которая образует мост к шине ввода-вывода. Шины играют важнейшую роль в обмене данными в РС. Фактически все компоненты РС, за исключением процессора, взаимодействуют друг с другом и системной памятью RAM через различные шины ввода-вывода, как показано на рисунке слева.

Шины адреса и данных

Каждая шина состоит из двух разных частей: шина данных (data bus) и шина адреса (address bus). Говоря о шине, большинство людей понимает именно шину данных; по линиям этой шины передаются собственно данные. Шина адреса представляет собой набор линий, сигналы на которых определяют, куда передавать или откуда принимать данные.

Конечно, имеются сигнальные линии для управления функционированием шины и сигнализации о доступности данных. Иногда эти линии называются шиной управления (control bus), хотя часто они и не упоминаются.

Ширина шины

Шина - это канал, по которому "течет" информация. Чем шире шина, тем больше информации может "течь" по каналу. Первая шина ISA в IBM PC имела ширину 8 битов; используемая сейчас универсальная шина ISA имеет ширину 16. Другие шины ввода-вывода, включая VLB и PCI, имеют ширину 32 бита. Ширина системной шины в РС с процессорами Pentium составляет 64 бита.

Ширину шины адреса можно определять независимо от ширины шины данных. Ширина шины адреса показывает, сколько ячеек памяти можно адресовать при передаче данных. В современных РС ширина шины адреса составляет 36 битов, что обеспечивает адресацию памяти емкостью 64 ГБ.

Скорость (быстродействие) шины

Скорость шины (bus speed) показывает, сколько битов информации можно передавать по каждому проводнику шины в секунду. Большинство шин передают по одному проводнику один бит в такте синхронизации, хотя новые шины, например AGP, могут передавать два бита данных в такте синхронизации, что удваивает производительность. В старой шине ISA для передачи одного бита требуются два такта синхронизации, что снижает производительность вдвое.

Ширина полосы пропускания шины

Ширина (битов)

Скорость (МГц)

Пропускная способность (МБ/с)

8-битовая ISA

16-битовая ISA

64-битовая PCI 2.1

AGP (режим x2)

AGP (режим x4)


Ширина полосы пропускания (bandwidth) называется также пропускной способностью (throughput) и показывает общий объем данных, который можно передать по шине за данную единицу времени. В таблице приведены теоретические пропускные способности современных шин ввода-вывода. Фактически шины не достигают теоретического показателя из-за служебных потерь на выполнение команд и других факторов. Большинство шин может работать с различной скоростью; в следующей таблице приведены наиболее типичные значения.

Сделаем замечание относительно четырех последних строк. Теоретически шину PCI можно расширить до 64 битов и скорости 66 МГц. Однако по причинам совместимости почти все шины PCI и устройства на шине рассчитаны только на 33 МГц и 32 бита. AGP опирается на теоретический стандарт и работает на 66 МГц, но сохраняет ширину 32 бита. AGP имеет дополнительные режимы x2 и x4, которые позволяют порту выполнять передачи данных два или четыре раза в такте синхронизации, что увеличивает эффективную скорость шины до 133 или 266 МГц.

Интерфейс шин

В системе с несколькими шинами чипсет должен обеспечить схемы для объединения шин и взаимодействия устройства на одной шине с устройством на другой шине. Такие схемы называются мостом (bridge) (отметим, что мостом называется также сетевое устройство для соединения двух разнотипных сетей). Наиболее распространен мост PCI-ISA, который является компонентом системного чипсета для РС с процессорами Pentium. Шина PCI также имеет мост к системной шине.

Мастеринг шины

В шинах с большой пропускной способностью каждую секунду по каналу передается огромный объем информации. Обычно для управления этими передачами требуется процессор. Фактически процессор действует как "посредник" и, как это часто бывает в реальном мире, намного эффективнее убрать посредника и прямо выполнять передачи. Для этого разработаны устройства, которые могут управлять шиной и действовать самостоятельно, т.е. передавать данные непосредственно в системную память RAM; такие устройства называются ведущими шины (bus masters). Теоретически процессор одновременно с передачами данных по шине может выполнять и другую работу; на практике ситуация усложняется несколькими факторами. Для правильной реализации мастеринга шины (bus mastering) необходим арбитраж запросов шины, который обеспечивается чипсетом. Мастеринг шины называется также "first party" DMA, так как работой управляет устройство, выполняющее передачу.

Сейчас мастеринг шины реализован на шине PCI; добавлена также поддержка для жестких дисков IDE/ATA реализации мастеринга шины на PCI при определенных условиях.

Принцип локальной шины

Начало 90-х годов характеризуется переходом от текстовых приложений к графическим и ростом популярности операционной системы Windows. А это привело к огромному увеличению объема информации, который должен передаваться между процессором, памятью, видео и жесткими дисками. Стандартный экран монохроматического (черно-белого) текста содержит всего 4000 байтов информации (2000 для кодов символов и 2000 для экранных атрибутов), а стандартный 256-цветный экран Windows требует более 300 000 байтов! Более того, современная разрешающая способность 1600x1200 при 16 млн цветов требует 5.8 млн байтов информации на экран!

Переход программного мира с текста на графику означал также увеличение размеров программ и повышенные требования памяти. С точки зрения ввода-вывода для обработки дополнительных данных для видеокарты и жестких дисков огромной емкости требуется намного большая пропускная способность ввода-вывода. С этой ситуацией пришлось столкнуться при появлении процессора 80486, производительность которого была намного выше прежних процессоров. Шина ISA перестала удовлетворять возросшим требованиям и стала узким местом в деле повышения производительности РС. Повышение скорости процессора мало что дает, если он должен ожидать медленной системной шины для передачи данных.

Решение было найдено в разработке новой более быстрой шины, которая должна была дополнить шину ISA и применяться специально для таких быстродействующих устройств как видеокарты. Эта шина должна была размещаться на (или вблизи) намного более быстрой шины памяти и работать примерно с внешней скоростью процессора, чтобы передавать данные намного быстрее стандартной шины ISA. При размещении таких устройств вблизи ("локально") процессора появилась локальная шина . Первой локальной шиной была VESA Local Bus (VLB), а современной локальной шиной в большинстве РС является шина Peripheral Component Interconnect (PCI).

Системная шина

Системная шина (system bus) соединяет процессор с основной памятью RAM и, возможно, с L2-кэшем. Она является центральной шиной компьютера и остальные шины "ответвляются" от нее. Системная шина реализована как набор проводников на материнской плате и должна соответствовать конкретному типу процессора. Именно процессор определяет характеристики системной шины. Вместе с тем, чем быстрее системная шина, тем быстрее должны быть остальные электронные компоненты РС.

Старые ЦП Ширина шины Скорость шины
8088 8 битов 4.77 МГц
8086 16 битов 8 МГц
80286-12 16 битов 12 МГц
80386SX-16 16 битов 16 МГц
80386DX-25 32 бита 25 МГц

Рассмотрим системные шины РС с процессорами нескольких поколений. В процессорах первого, второго и третьего поколений частота системной шины определялась рабочей частотой процессора. По мере повышения скорости процессора увеличивалась и скорость системной шины. Одновременно увеличивалось и адресное пространство: в процессорах 8088/8086 оно составляло 1 МБ (20-битовый адрес), в процессоре 80286 адресное пространство увеличено до 16 МБ (24-битовый адрес), а начиная с процессора 80386 адресное пространство составляет 4 ГБ (32-битовый адрес).

Семейство 80486 Ширина шины Скорость шины
80486SX-25 32 бита 25 МГц
80486DX-33 32 бита 33 МГц
80486DX2-50 32 бита 25 МГц
80486DX-50 32 бита 50 МГц
80486DX2-66 32 бита 33 МГц
80486DX4-100 32 бита 40 МГц
5X86-133 32 бита 33 МГц

Как видно из таблицы для процессоров четвертого поколения, скорость системной шины вначале соответствовала рабочей частоте процессора. Однако технологические достижения позволяли повышать частоту процессора, а соответствие скорости системной шины требовало повышения быстродействия внешних компонентов, в основном, системной памяти, что было сопряжено со значительными трудностями и стоимостными ограничениями. Поэтому в процессоре 80486DX2-50 было впервые использовано удвоение частоты (clock doubling): процессор работал с внутренней частотой синхронизации 50 МГц, а внешняя скорость системной шины составляла 25 МГц, т.е. только половину рабочей частоты процессора. Этот прием значительно повышает производительность компьютера, особенно благодаря наличию внутреннего L1-кэша, который удовлетворяет большинство обращений процессора к системной памяти. С тех пор умножение частоты (clock multiplying) стало стандартным способом повышения производительности компьютера и применяется во всех современных процессорах, причем множитель частоты доведен до 8, 10 и более.

Семейство Pentium Ширина шины Скорость шины
Intel P60 64 бита 60 Мгц
Intel P100 64 бита 66 МГц
Cyrix 6X86 P133+ 64 бита 55 МГц
AMD K5-133 64 бита 66 МГц
Intel P150 64 бита 60 Мгц
Intel P166 64 бита 66 МГц
Cyrix 6X86 P166+ 64 бита 66 МГц
Pentium Pro 200 64 бита 66 МГц
Cyrix 6X86 P200+ 64 бита 75 МГц
Pentium II 64 бита 66 Мгц

Продолжительное время системные шины РС с процессорами пятого поколения работали со скоростью 60 МГц и 66 МГц. Значительным шагом вперед стало увеличение ширины данных до 64 битов и расширение адресного пространства до 64 ГБ (36-битовый адрес).

Скорость системной шины была повышена до 100 МГц в 1998 г. благодаря освоению производства микросхем PC100 SDRAM. Микросхемы памяти RDRAM позволяют еще более повысить скорость системной шины. Однако переход от 66 МГц к 100 МГц оказал значительное влияние на процессоры и материнские платы с Socket 7. В модулях Pentium II до 70-80% трафика (передач информации) осуществляется внутри нового картриджа SEC (Single Edge Cartridge), в котором находятся процессор и оба кэша L1-кэш и L2-кэш. Этот картридж работает со своей скоростью, независящей от скорости системной шины.

Процессор Чипсет Скорость
шины
Скорость ЦП
Intel Pentium II 82440BX
82440GX
100 МГц 350,400,450 МГц
AMD K6-2 Via MVP3,
ALi Aladdin V
100 МГц 250,300,400 МГц
Intel Pentium II Xeon 82450NX 100 МГц 450,500 МГц
Intel Pentium III i815
i820
133 МГц 600,667+ МГц
AMD Athlon VIA KT133 200 МГц 600 - 1000 МГц

Чипсеты i820 и i815, разработанные для процессора Pentium III, рассчитаны на системную шину 133 МГц. Наконец, в процессоре AMD Athlon введены значительные изменения в архитектуру и понятие системной шины оказалось ненужным. Этот процессор может работать с различными типами RAM на максимальной частоте 200 МГц.

Типы шин ввода-вывода

В этом разделе речь пойдет о различных шинах ввода-вывода, причем большая часть его посвящена современным шинам. Общее представление об использовании шин ввода-вывода дает следующий рисунок, наглядно показывающий назначение различных шин ввода-вывода современного РС.

В следующей таблице приведены суммарные сведения о различных шинах ввода-вывода, которые применяются в современных РС:

Шина Год Ширина Скорость Макс. пропускная
способность
PC и XT 1980-82 8 битов Синхронная: 4.77-6 МГц 4-6 МБ/с
ISA (AT) 1984 16 битов Синхронная: 8-10 МГц 8 МБ/с
MCA 1987 32 бита Асинхронная: 10.33 МГц 40 МБ/с
EISA (для серверов) 1988 32 бита Синхронная: макс. 8 МГц 32 МБ/с
VLB, для 486 1993 32 бита Синхронная: 33-50 МГц 100-160 МБ/с
PCI 1993 32/64 бита Асинхронная: 33 МГц 132 МБ/с
USB 1996 Последовательная 1.2 МБ/с
FireWire (IEEE1394) 1999 Последовательная 80 МБ/с
USB 2.0 2001 Последовательная 12-40 МБ/с

Старые шины

Новые современные шина PCI и порт AGP "родились" из старых шин, которые до сих пор можно встретить в РС. Более того, самая старая шина ISA до сих пор используется даже в новейших РС. Далее мы рассмотрим несколько подробнее старые шины РС.

Шина Industry Standard Architecture (ISA)

Это самая распространенная и действительно стандартная шина для РС, которая используется даже в новейших компьютерах несмотря на то, что практически не изменилась с момента своего расширения до 16 битов в 1984 г. Конечно, сейчас она дополнена более быстрыми шинами, но "выживает" благодаря наличию огромной базы периферийного оборудования, рассчитанного на этот стандарт. Кроме того, имеется много устройств, для которых скорости ISA более чем достаточно, например для модемов. По мнению некоторых экспертов до "умирания" шины ISA пройдет не менее 5-6 лет.

Выбор ширины и скорости шины ISA определился процессорами, с которыми она работала в первых РС. Оригинальная шина ISA в IBM PC имела ширину 8 битов, соответствуя 8 битам внешней шины данных процессора 8088, и работала на частоте 4.77 МГц, что также соответствует скорости процессора 8088. В 1984 г. появился компьютер IBM AT с процессором 80286 и ширина шины была удвоена до 16 битов, как у внешней шины данных процессора 80286. Одновременно была повышена до 8 МГц скорость шины, что также соответствовало скорости процессора. Теоретически пропускная способность шины составляет 8 МБ/с, но практически она не превышает 1-2 МБ/с.

В современных РС шина ISA действует как внутренняя шина , которая используется для клавиатуры, гибкого диска, последовательных и параллельных портов, и как внешняя шина расширения , к которой можно подключить 16-битовые адаптеры, например звуковую карту.

Впоследствии процессоры AT стали быстрее, а затем была увеличена и их шина данных, но теперь требование совместимости с существующими устройствами заставило производителей придерживаться стандарта и шина ISA с того времени практически не изменилась. Шина ISA обеспечивает достаточную пропускную способность для медленных устройств и наверняка гарантирует совместимость почти с каждым выпущенным РС.

Многие карты расширения, даже современные, до сих пор являются 8-битовыми (об этом можно узнать по разъему карты - 8-битовые карты используют только первую часть разъема ISA, а 16-битовые карты используют обе части). Для этих карт невысокая пропускная способность шины ISA не играет роли. Однако доступ к прерываниям от IRQ 9 до IRQ 15 обеспечивается через проводники в 16-битовой части разъемов шины. Именно поэтому большинство модемов нельзя подключить к IRQ с большими номерами. Линии IRQ между устройствами ISA нельзя разделять.

Документ The PC99 System Design Guide , подготовленный компаниями Intel и Microsoft, категорически требует удаления слотов шины ISA с материнских плат, поэтому можно ожидать, что дни этой "заслуженной" шины сочтены.

Шина MicroChannel Architecture (MCA)

Эта шина стала попыткой компании IBM сделать шину ISA "больше и лучше". При появлении в середине 80-х годов процессора 80386DX с 32-битовой шиной данных компания IBM решила разработать шину, соответствующую такой ширине шины данных. Шина MCA имела ширину 32 бита и имела несколько преимуществ по сравнению с шиной ISA.

Шина MCA имела несколько прекрасных возможностей с учетом того, что она появилась в 1987 г., т.е. за семь лет до появления шины PCI с аналогичными возможностями. В некоторых отношениях шина МСА просто опередила свое время:

  • Ширина 32 бита: Шина имела ширину 32 бита, как и локальные шины VESA и PCI. Ее пропускная способность была намного выше по сравнению с шиной ISA.
  • Мастеринг шины: Шина MCA эффективно поддерживала адаптеры с мастерингом шины, включая правильный арбитраж шины.
  • Шина MCA автоматически конфигурировала карты адаптеров, поэтому перемычки стали ненужными. Это произошло за 8 лет до того, как Windows 95 превратила технологию PnP в общепринятую для РС.

Шина MCA имела огромные потенциальные возможности. К сожалению, компания IBM приняла два таких решения, которые не способствовали распространению этой шины. Во-первых, шина МСА была несовместимой с шиной ISA, т.е. карты ISA вообще не работали в РС с шиной МСА, а компьютерный рынок очень чувствителен к проблеме обратной совместимости. Во-вторых, компания IBM решила сделать шину МСА своей собственностью, не продавая лицензию на ее применение.

Эти два фактора совместно с более высокой стоимостью систем с шиной МСА привели к забвению шины МСА. Поскольку компьютеры PS/2 больше не выпускаются, шина МСА "умерла" для рынка РС, хотя компания IBM до сих пор использует ее в своих серверах RISC 6000 UNIX. История с шиной МСА является одним из классических примеров того, как в мире компьютеров нетехнические вопросы часто доминируют над техническими.

Шина Extended Industry Standard Architecture (EISA)

Эта шина никогда не стала таким стандартом, каким является шина ISA, и не получила широкого распространения. Фактически она была ответом компании Compaq на шину МСА и привела к аналогичным результатам.

Компания Compaq при разработке шины EISA избежала двух важнейших ошибок компании IBM. Во-первых, шина EISA была совместимой с шиной ISA и, во-вторых, было разрешено использовать ее всем производителям РС. В общем, шина EISA имела значительные технические преимущества над шиной ISA, но рынок ее не воспринял. Основные особенности шины EISA:

  • Совместимость с шиной ISA: Карты ISA могли работать в слотах EISA.
  • Ширина шины 32 бита: Ширина шины увеличена до 32 битов.
  • Мастеринг шины: Шина EISA эффективно поддерживала адаптеры с мастерингом шины, включая правильный арбитраж шины.
  • Технология Plug and Play (PnP): Шина EISA автоматически конфигурировала карты адаптеров аналогично стандарту PnP современных систем.

Системы на базе EISA сейчас иногда встречаются в сетевых файловых серверах, а в настольных РС она не применяется из-за более высокой стоимости и отсутствию широкого выбора адаптеров. Наконец, пропускная способность ее значительно уступает локальным шинам VESA Local Bus и PCI. Практически шина сейчас EISA близка к "умиранию".

Шина VESA Local Bus (VLB)

Первая довольно популярная локальная шина VESA Local Bus (VL-Bus или VLB) появилась в 1992 г. Аббревиатура VESA означает Video Electronics Standards Association, а эта ассоциация была создана в конце 80-х годов для решения проблем видеосистем в РС. Основной причиной разработки шины VLB было улучшение производительности видеосистем РС.

Шина VLB представляет собой 32-битовую шину, которая является прямым расширением шины памяти процессора 486. Слот шины VLB - это 16-битовый слот ISA с добавленными в конце третьим и четвертым разъемами. Шина VLB обычно работает на частоте 33 МГц, хотя в некоторых системах возможна и большая скорость. Поскольку она является расширением шины ISA, карту ISA можно использовать в слоте VLB, но имеет смысл вначале занять обычные слоты ISA и оставить небольшое число слотов VLB для карт VLB, которые, конечно, не работают в слотах ISA. Применение видеокарты VLB и контроллера ввода-вывода значительно повышает производительность системы по сравнению с системой, имеющей только одну шину ISA.

Несмотря на то, что шина VLB была очень популярна в РС с процессором 486, появление в 1994 г. процессора Pentium и его локальной шины PCI привело к к постепенному "забвению" шины VLB. Одной из причин этого стали усилия фирмы Intel по продвижению шины PCI, но было и несколько технических проблем, связанных с реализацией VLB. Во-первых, конструкция шины очень сильно "привязана" к процессору 486, а переход к Pentium вызвал проблемы совместимости и другие проблемы. Во-вторых, сама шина имела технические недостатки: небольшое число карт на шине (часто две или даже одна), проблемы синхронизации при использовании нескольких карт и отсутствие поддержки мастеринга шины и технологии Plug and Play.

Сейчас шина VLB считается устаревшей и даже в последних материнских платах с процессором 486 используется шина PCI, а с процессорами Pentium - только PCI. Однако РС с шиной VLB недороги и их иногда можно еще встретить.

Шина Peripheral Component Interconnect (PCI)

Наиболее популярная сейчас шина ввода-вывода взаимодействия периферийных компонентов (Peripheral Component Interconnect - PCI) разработана фирмой Intel в 1993 г. Она ориентировалась на системы пятого и шестого поколений, но применялась и в последнем поколении материнских плат с процессором 486.

Как и шина VESA Local Bus, шина PCI имеет ширину 32 бита и обычно работает на частоте 33 МГц. Главное преимущество PCI над шиной VESA Local Bus кроется в чипсете, который управляет шиной. Шиной PCI управляют специальные схемы в чипсете, а шина VLB была, в основном, просто расширением шины процессора 486. Шина PCI в этом отношении не "привязана" к процессору 486 и ее чипсет обеспечивает правильные управление шиной и арбитраж шины, позволяя PCI делать намного больше, чем могла шина VLB. Шина PCI также применяется и вне платформы РС, обеспечивая универсальность и сокращая стоимость разработки систем.

В современных РС шина PCI действует как внутренняя шина , которая подключается к каналом EIDE на материнской плате, и как внешняя шина расширения , которая имеет 3-4 слота расширения для PCI-адаптеров.

Шина PCI соединяется с системной шиной через специальный "мост" (bridge) и работает на фиксированной частоте независимо от частоты синхронизации процессора. Она ограничена пятью слотами расширения, но каждый из них можно заменить двумя устройствами, встроенными в материнскую плату. Процессор может также поддерживать несколько микросхем мостов. Шина PCI более строго специфицирована по сравнению с шиной VL-Bus и предоставляет несколько дополнительных возможностей. В частности, она поддерживает карты, имеющие напряжение питания +3.3 В и 5 В, с помощью специальных ключей, которые не позволяют вставить карту в неподходящий слот. Далее функционирование шины PCI рассмотрено более подробно.

Производительность шины PCI

Шина PCI фактически имеет наибольшую производительность среди общих шин ввода-вывода в современных РС. Это объясняется несколькими факторами:

  • Пакетный режим (burst mode): Шина PCI может передавать информацию в пакетном режиме, когда после начальной адресации можно подряд передавать несколько наборов данных. Этот режим похож на пакетизацию кэша (cache bursting).
  • Мастеринг шины: Шина PCI поддерживает полный мастеринг, что способствует повышению производительности.
  • Опции высокой полосы пропускания: Версия 2.1 спецификации шины PCI допускает расширение до 64 битов и 66 МГц, что повышает текущую производительность в четыре раза. На практике 64-битовая шина PCI пока в РС не реализована (хотя уже применяется в некоторых серверах) и скорость сейчас ограничена 33 МГц, в основном, из-за проблем совместимости. Некоторое время придется ограничиваться 32 битами и 33 МГц. Однако благодаря AGP в несколько измененной форме будет реализована и более высокая производительность.

Скорость шины PCI в зависимости от чипсета и материнской платы можно установить как синхронную или асинхронную. При синхронной настройке (используемой в большинстве РС) шина PCI работает с половинной скоростью шины памяти; поскольку шина памяти обычно работает на 50, 60 или 66 МГц, шина PCI работает на частоте 25, 30 или 33 МГц. При асинхронной настройке скорость шины PCI можно задавать независимо от скорости шины памяти. Этим обычно управляют с помощью перемычек на материнской плате или параметрами BIOS. "Разгон" (overclocking) системной шины в РС, который использует синхронную шину PCI, вызовет "разгон" и периферийных устройств PCI, часто вызывая проблемы неустойчивой работы системы.

В первоначальной реализации шина PCI работала на частоте 33 МГц, а последующая спецификация PCI 2.1 определила частоту 66 МГц, что соответствует пропускной способности 266 МБ/с. Шину PCI можно конфигурировать на ширину данных 32 и 64 бита и допускается применять 32- и 64-битовые карты, а также разделять прерывания, что удобно в высокопроизводительных системах, в которых не хватает линий IRQ. С середины 1995 г. все скоростные устройства РС взаимодействуют друг с другом по шине PCI. Чаще всего она применяется для контроллеров жестких дисков и графических контроллеров, которые монтируются непосредственно на материнской плате или на картах расширения в слотах шины PCI.

Слоты расширения шины PCI

Шина PCI допускает больше слотов расширения, чем шина VLB, не вызывая технических проблем. Большинство систем с PCI поддерживают 3 или 4 слота PCI, а некоторые и значительно больше.

Примечание: В некоторых системах не все слоты обеспечивают мастеринг шины. Сейчас это встречается реже, но все же рекомендуется посмотреть руководство по материнской плате.

Шина PCI допускает большее разнообразие карт расширения по сравнению с шиной VLB. Чаще всего встречаются видеокарты, хост-адаптеры SCSI и скоростные сетевые карты. (Жесткие диски также работают на шине PCI, но они обычно подключаются непосредственно к материнской плате.) Однако отметим, что шина PCI не реализует некоторые функции, например последовательные и параллельные порты должны оставаться на шине ISA. К счастью, даже сейчас шина ISA остается более чем достаточной для этих устройств.

Внутренние прерывания шины PCI

Шина PCI использует свою внутреннюю систему прерываний для обработки запросов от карт на шине. Эти прерывания часто называются "#A", "#B", "#C" и "#D", чтобы избежать путаницы с обычно пронумерованными системными IRQ, хотя иногда они называются также от "#1" до "#4". Эти уровни прерываний обычно невидимы пользователю за исключением экрана настройки BIOS для PCI, где их можно использовать для управления работой карт PCI.

Эти прерывания, если они требуются картам в слотах, отображаются на обычные прерывания, чаще всего на IRQ9 - IRQ12. Слоты PCI в большинстве систем можно отобразить на большинство четыре обычных IRQs. В системах, имеющих больше четырех слотов PCI или имеющих четыре слота и контроллер USB (который использует PCI), два или больше устройств PCI разделяют IRQ.

Мастеринг шины PCI

Напомним, что мастеринг шины (bus mastering) представляет собой способность устройств на шине PCI (отличающихся, конечно, от системного чипсета) брать на себя управление шиной и непосредственно выполнять передачи. Шина PCI стала первой шиной шиной, которая привела к популярности мастеринга шины (наверное, потому что операционная система и программы смогли использовать его преимущества).

Шина PCI поддерживает полный мастеринг шины и обеспечивает средства арбитража шины через системный чипсет. Конструкция PCI допускает одновременный мастеринг шины нескольких устройств, а схема арбитража гарантирует, что ни одно устройство на шине (включая процессор!) не заблокирует никакое другое устройство. Однако разрешается одному устройству использовать полную пропускную способность шины, если другие устройства ничего не передают. Другими словами, шина PCI действует как крохотная локальная сеть внутри компьютера, в которой несколько устройств могут взаимодействовать друг с другом, разделяя коммуникационный канал, и которой управляет чипсет.

Технология Plug and Play для шины PCI

Шина PCI является частью стандарта Plug and Play (PnP), разработанного компаниями Intel, Microsoft и многими другими. Системы с шиной PCI первыми популяризировали применение PnP. Схемы чипсета PCI управляют идентификацией карт и совместно с операционной системой и BIOS автоматически производят распределение ресурсов для совместимых карт.

Шина PCI постоянно совершенствуется и разработками руководит Группа PCI Special Interest Group, в которую входят компании Intel, IBM, Apple и др. Результатом этих разработок стало повышение частоты шины до 66 МГц и расширение данных до 64 битов. Однако создаются и альтернативные варианты, например ускоренный графический порт (AGP) и скоростная последовательная шина FireWire (IEEE 1394). Фактически AGP представляет собой шину PCI 66 МГц (версия 2.1), в которую введены некоторые усовершенствования, ориентированные на графические системы.

Еще одной инициативой является шина PCI-X , называемая также "Project One" и "Future I/O". Компании IBM, Mylex, 3Com, Adaptec, Hewlett-Packard и Compaq хотят разработать специальную высокоскоростную серверную версию шины PCI. Эта шина будет иметь пропускную способность 1 ГБ/с (64 бита, 133 МГц). Компании Intel и Dell Computer не участвуют в этом проекте.

Компании Dell Computer, Hitachi, NEC, Siemens, Sun Microsystems и Intel в ответ на Project One выступили с инициативой разработки шины Next-Generation I/O (NGIO ), ориентированной на новую архитектуру ввода-вывода для серверов.

В августе 1999 г. семь лидирующих компаний (Compaq, Dell, Hewlett-Packard, IBM, Intel, Microsoft, Sun Microsystems) объявили о намерении объединить лучшие идеи шин Future I/O и Next Generation I/O. Новая открытая архитектура ввода-вывода для серверов должна обеспечить пропускную способность до 6 ГБ/с. Ожидается, что новый стандарт NGIO будет принят в конце 2001 г.

Ускоренный графический порт

Необходимость повышения полосы пропускания между процессором и видеосистемой вначале привела к разработке в РС локальной шины ввода-вывода, начиная с VESA Local Bus и кончая современной шиной PCI. Эта тенденция продолжается, причем требование повышенной полосы пропускания для видео уже не удовлетворяет даже шина PCI с ее стандартной пропускной способностью 132 МБ/с. Трехмерная графика (3D graphics) позволяет моделировать на экране виртуальные и реальные миры с мельчайшими деталями. Отображение текстур и скрывание объектов требуют огромных объемов данных и видеокарта должна иметь быстрый доступ к этим данным, чтобы поддержать высокую частоту регенерации.

Трафик на шине PCI становится очень напряженным в современных РС, когда видео, жесткие диски и другие периферийные устройства конкурируют между собой за единственную полосу пропускания ввода-вывода. Чтобы предотвратить насыщение шины PCI видеоинформацией, фирма Intel разработала новый интерфейс специально для видеосистемы, который называется ускоренный графический порт (Accelerated Graphics Port - AGP).

Порт AGP разработан в ответ на требование все большей производительности для видео. По мере использования программами и компьютерами таких областей, как трехмерная акселерация и воспроизведение видеофильмов (full-motion video playback), процессор и видео-чипсет должны обрабатывать все больше и больше информации. В таких приложения шина PCI достигла своего предела тем более, что ее используют еще и жесткие диски и другие периферийные устройства.

Кроме того, требуется все больше и больше видеопамяти. Для трехмерной графики нужно больше памяти и не только для экранного изображения, но и для производства вычислений. Традиционно эта проблема решается размещением все больше памяти на видеокарте, но при этом возникают две проблемы:

  • Стоимость: Видеопамять дороже обычной памяти RAM.
  • Ограниченная емкость: Емкость памяти на видеокарте ограничена: если разместить на карте 6 МБ и для буфера кадра требуется 4 МБ, то для обработки остается всего 2 МБ. Эту память расширить непросто и ее нельзя использовать для чего-то другого, если видеообработка не нужна.

AGP решает эти проблемы, разрешая видеопроцессору обращаться к основной системной памяти для производства вычислений. Этот прием намного эффективнее, так как эту память можно динамически разделять между системным процессором и видеопроцессором в зависимости от потребностей системы.

Идея реализации AGP довольно проста: создать быстрый специализированный интерфейс между видео-чипсетом и системным процессором. Интерфейс реализуется только между этими двумя устройствами, что обеспечивает три основных преимущества: проще реализовать порт, проще повысить скорость AGP и можно ввести в интерфейс специфические для видео усовершенствования. AGP-чипсет действует как посредник между процессором, L2-кэшем Pentium II, системной памятью, видеокартой и шиной PCI, реализуя так называемый счетверенный порт (Quad Port).

AGP считается портом, а не шиной, так как он объединяет только два устройства (процессор и видеокарту) и не допускает расширения. Одно из главных достоинств AGP состоит в том, что он изолирует видеосистему от остальных компонентов РС, исключая конкуренцию за полосу пропускания. Поскольку видеокарта удаляется с шины PCI, остальные устройства могут работать быстрее. Для AGP на материнской плате предусмотрен специальный сокет, который похож на сокет шины PCI, но размещается в другом месте платы. На следующем рисунке сверху видны два сокета шины ISA (черные), затем два сокета шины PCI (белые) и сокет ADP (коричневый).

AGP появился в конце 1997 г. и первой его поддержал чипсет 440LX Pentium II. Уже в следующем году появились AGP-чипсеты других компаний. Подробнее об AGP см. сайт http://developer.intel.com/technology/agp/ .

Интерфейс AGP

Интерфейс AGP во многих отношениях похож на шину PCI. Сам слот имеет такие же физические форму и размеры, но смещен от края материнской платы дальше, чем слоты PCI. Спецификация AGP фактически опирается на спецификацию PCI 2.1, которая допускает скорость 66 МГц, но эта скорость не реализована в РС. Материнские платы AGP имеют один слот расширения для видеокарты AGP и на один слот PCI меньше, а в остальном похожи на материнские платы PCI.

Ширина, скорость и полоса пропускания шины

Шина AGP имеет ширину 32 бита, как и шина PCI, но вместо работы с половинной скоростью шины памяти, как это делает PCI, она работает с полной скоростью. Например, на стандартной материнской плате Pentium II шина AGP работает на 66 МГц вместо 33 МГц шины PCI. Это сразу же удваивает полосу пропускания порта - вместо предела в 132 МБ/с для PCI порт AGP имеет в режиме наименьшей скорости полосу 264 МБ/с. Кроме того, он не разделяет полосу с другими устройствами шины PCI.

В дополнение к удвоению скорости шины в AGP определен режим 2X , в котором используются специальные сигналы, позволяющие передавать через порт вдвое больше данных при одной и той же частоте синхронизации. В этом режиме информация передается по нарастающему и спадающему фронтам сигнала синхронизации. Если шина PCI передает данные только по одному фронту, AGP передает данные по обоим фронтам. В результате производительность еще удваивается и теоретически доходит до 528 МБ/с. Планируется также реализовать режим 4X , в котором в каждом такте синхронизации осуществляются четыре передачи, что повысит производительность до 1056 МБ/с.

Конечно, все это впечатляет и для видеокарты ширина полосы в 1 ГБ/с очень хорошая, но возникает одна проблема: в современном РС имеется несколько шин. Напомним, что в процессорах класса Pentium ширина шины данных 64 бита и она работает на 66 МГц, что обеспечивает теоретическую пропускную способность 524 МБ/с, поэтому полоса в 1 ГБ/с не дает значительного выигрыша, если не повысить скорость шины данных сверх 66 МГц. В новых материнских платах скорость системной шины повышена до 100 МГц, что увеличивает пропускную способность до 800 МБ/с, но и этого недостаточно для того, чтобы оправдать передачи режима 4X .

Кроме того, процессор должен обращаться к системной памяти, а не только к видеосистеме. Если вся системная полоса 524 МБ/с занята видео через AGP, что же остается делать процессору? В этом случае переход к системной скорости 100 МГц даст определенный выигрыш.

Видео-конвейеризация порта AGP

Одно из достоинств AGP состоит в возможности конвейеризовать запросы данных. Конвейеризация впервые использовалась в современных процессорах как способ повышения производительности за счет перекрытия последовательных фрагментов задач. Благодаря AGP видео-чипсет может использовать аналогичный прием при запросе информации из памяти, что значительно повышает производительность.

Доступ AGP к системной памяти

Важнейшая особенность AGP заключается в возможности разделять основную системную память с видео-чипсетом. Это обеспечивает видеосистеме доступ к большей памяти для реализации трехмерной графики и другой обработки, не требуя размещения на видеокарте большой видеопамяти. Память на видеокарте разделяется между буфером кадра (frame buffer) и другими применениями. Поскольку для буфера кадра требуется быстродействующая и дорогая память, например VRAM, в большинстве карт вся память выполняется на VRAM, хотя этого и требуется для областей памяти кроме буфера кадра.

Отметим, что AGP не относится к унифицированной архитектуре памяти (Unified Memory Architecture - UMA). В этой архитектуре вся память видеокарты, включая и буфер кадра, берется из основной системной памяти. В AGP буфер кадра остается на видеокарте, где он и размещается. Буфер кадра является наиболее важным компонентом видеопамяти и требует наивысшей производительности, поэтому целесообразнее оставить его на видеокарте и использовать для него VRAM.

AGP разрешает видеопроцессору обращаться к системной памяти для решения других задач, требующих памяти, например текстурирования и других операций трехмерной графики. Эта память не столь критична, как буфер кадра, что позволяет удешевить видеокарты за счет уменьшения емкости памяти VRAM. Обращение к системной памяти называется прямым выполнением из памяти (DIrect Memory Execute - DIME). Специальное устройство, называемое таблицей переотображения графической апертуры (Graphics Aperture Remapping Table - GART), оперирует адресами RAM таким образом, что их можно распределить в системной памяти небольшими блоками, а не одной большой секции, и предоставляет их видеокарте как бы частью видеопамяти. Наглядное представление о функциях AGP дает следующий рисунок:


Требования AGP

Чтобы использовать в системе AGP, необходимо выполнить несколько требований:

  • Наличие видеокарты AGP: Это требование вполне очевидно.
  • Наличие материнской платы с чипсетом AGP: Разумеется, чипсет на материнской плате должен поддерживать AGP.
  • Поддержка операционной системы: Операционная система должна поддерживать новый интерфейс с помощью своих внутренних драйверов и процедур.
  • Поддержка драйверов: Конечно, видеокарте требуются специальные драйверы, чтобы поддерживать AGP и использовать его специальные возможности, например режим 3X .

Новые последовательные шины

Уже 20 лет многие периферийные устройства подключаются к тем же параллельным и последовательным портам, которые появились в первом РС, и за исключением стандарта Plug and Play "технология ввода-вывода" с 1081 г. мало изменилась. Однако к концу 90-х годов прошлого века пользователи все сильнее стали ощущать ограничения стандартных параллельных и последовательных портов:

  • Пропускная способность : Последовательные порты имеют максимальную пропускную способность 115.2 Кб/с, а параллельные порты (в зависимости от типа) около 500 Кб/с. Однако для таких устройств, как цифровые видеокамеры требуется значительно более высокая пропускная способность.
  • Простота использования : Подключать устройства к старым портам очень неудобно, особенно через переходные разъемы параллельных портов. Кроме того, все порты расположены сзади РС.
  • Аппаратные ресурсы : Для каждого порта требуется своя линия IRQ. РС имеет всего 16 линий IRQ, большинство из которых уже занято. Некоторые РС для подключения новых устройств имеют всего пять свободных линий IRQ.
  • Ограниченное число портов : Многие РС имеют два последовательных порта СОМ и один параллельный порт LPT. Допускается добавить больше портов но за счет использования ценных линий IRQ.

В последние годы технология ввода-вывода превратилась в одну из наиболее динамичных областей развития настольных РС и два разработанных стандарта последовательных передач данных сильно изменили способы подключения периферийных устройств и подняли концепцию Plug and Play на новую высоту. Благодаря новым стандартам любой пользователь сможет подключить к РС почти неограниченное множество устройств буквально за несколько секунд, не имея специальных технических знаний.

Универсальная последовательная шина

Разработанный компаниями Compaq, Digital, IBM, Intel, Microsoft, NEC и Northern Telecom стандарт универсальной последовательной шины (Universal Serial Bus - USB) предоставляет новый разъем для подключения всех распространенных устройств ввода-вывода, устраняя множество современных портов и разъемов.

Шина USB допускает подключение до 127 устройств с помощью шлейфного соединения (daisy-chaining) или использования USB-хаба (USB hub). Сам хаб, или концентратор , имеет несколько сокетов и вставляется в РС или другое устройство. К каждому USB-хабу можно подключить семь периферийных устройств. Среди них может быть и второй хаб, к которому можно подключить еще семь периферийных устройств, и т.д. Вместе с сигналами данных шина USB передает и напряжение питания +5 В, поэтому небольшие устройства, например ручные сканеры, могут не иметь собственного блока питания.

Устройства подключаются непосредственно в 4-контактный сокет (розетку) на РС или хабе в виде прямоугольного сокета Типа А. Все кабели, которые постоянно подключены к устройству, имеют вилку Типа А. Устройства, которые используют отдельный кабель, имеют квадратный сокет Типа В, а кабель, который подключает их, имеет вилку Типа А или Типа В.

Шина USB снимает ограничения скорости последовательных портов на базе UART. Она работает со скоростью 12 Мб/с, что соответствует сетевым технологиям Ethernet и Token Ring и обеспечивает достаточную пропускную способность для всех современных периферийных устройств. Например, пропускной способности шины USB достаточно для поддержки таких устройств, как внешние накопители CD-ROM и ленточные накопители, а также интерфейсов ISDN обычных телефонов. Ее также достаточно для передачи сигналов цифрового звука непосредственно в динамики, оснащенные цифро-аналоговыми преобразователя, что устраняет необходимость иметь звуковую карту. Однако шина USB не предназначена заменить сети. Чтобы получить приемлемо низкую стоимость, расстояние между устройствами ограничено 5 м. Для медленных устройств типа клавиатуры и мыши можно установить скорость передачи данных 1.5 Мб/с, экономя пропускную способность для более быстрых устройств.

Шина USB полностью поддерживает технологию Plug and Play. Она устраняет необходимость установки карт расширения внутри РС и последующего реконфигурирования системы. Шина позволяет подключать, конфигурировать, использовать и при необходимости отключать периферийные устройства в то время, когда РС и другие устройства работают. Не нужно инсталлировать драйверы, выбирать последовательные и параллельные порты, а также определять линии IRQ, DMA-каналы и адреса ввода-вывода. Все это достигается путем управления периферийными устройствами с помощью хост-контроллера на материнской плате или на карте PCI. Хост-контроллер и подчиненные контроллеры в хабах управляют периферийными устройствами, снижая нагрузку на процессор и повышая общую производительность системы. Самим хост-контроллером управляет системное программное обеспечение в составе операционной системы.

Данные передаются по двунаправленному каналу, которым управляют хост-контроллер и подчиненные контроллеры хабов. Улучшенный мастеринг шины позволяет постоянно зарезервировать для конкретных периферийных устройств части общей пропускной способности; такой способ называется изохронной передачей данных (isochronous data transfer). Интерфейс шины USB содержит два основных модуля: машину последовательного интерфейса (Serial Interface Engine - SIE), отвечающую за протокол шины, и корневой хаб (Root Hub), используемый для расширения числа портов шины USB.

Шина USB выделяет каждому порту 500 мА. Благодаря этому маломощные устройства, которые обычно требуют отдельный преобразователь переменного тока (AC adapter), можно питать через кабель - USB позволяет РС автоматически определять требуемую мощность и доставлять ее в устройство. Хабы допускают полное питание от шины USB (bus powered), но могут иметь свой преобразователь переменного тока. Хабы с собственным питанием, предоставляющие 500 мА на порт, обеспечивают максимальную гибкость для будущих устройств. Хабы с переключением портов изолируют все порты друг от друга, поэтому одно "закороченное" не нарушает работу других.

Шина USB обещает создание РС с единственным портом USB вместо современных четырех или пяти различных разъемов. К нему можно подключить одно большое мощное устройство, например монитор или принтер, которое будет действовать как хаб, обеспечивая подключение других меньших устройств, например мыши, клавиатуры, модема, сканера, цифровой камеры и т.д. Однако для этого потребуется разработка специальных драйверов устройств. Однако у такой конфигурации РС имеются недостатки. Некоторые специалисты считают, что архитектура USB довольно сложная, а необходимость поддержки многих разнотипных периферийных устройств требует разработки целого набора протоколов. Другие полагают, что принцип хаба просто смещает стоимость и сложность с системного блока в клавиатуру или монитор. Но главным препятствием успеху USB является стандарт IEEE 1394 FireWire.

Шина IEEE 1394 FireWire

Этот стандарт быстродействующей периферийной шины разработан компаниями Apple Computer, Texas Instruments и Sony. Он разрабатывался как дополнение шины USB, а не как альтернатива ей, поскольку в одной системе могут использоваться обе шины, аналогично современным параллельным и последовательным портам. Однако крупные производители цифровых камер и принтеров заинтересованы в шине IEEE 1394 больше, чем в шине USB, потому что для цифровых камер лучше подходит сокет 1394, а не порт USB.

Шина IEEE 1394 (обычно называемая FireWire - "Огненный провод") во многом похожа на шину USB, также являясь последовательной шиной с горячей заменой, но намного быстрее. В IEEE 1394 есть два уровня интерфейса: один для шины на материнской плате компьютера и второй для интерфейса типа "точка-точка" между периферийным устройством и компьютером по последовательному кабелю. Простой мост объединяет эти два уровня. Интерфейс шины поддерживает скорости передачи данных в 12.5, 25 или 50 МБ/с, а интерфейс кабеля - 100, 200 и 400 Мб/с, что намного больше скорости шины USB - 1.5 МБ/с или 12 Мб/с. Спецификация 1394b определяет другие способы кодирования и передачи данных, что позволяет повысить скорость до 800 Мб/с, 1.6 Гб/с и более. Такая высокая скорость позволяет применять IEEE 1394 для подключения к РС цифровых камер, принтеров, телевизоров, сетевых карт и внешних запоминающих устройств.

Разъемы кабеля IEEE 1394 сделаны так, что электрические контакты находятся внутри корпуса разъема, что предотвращает возможности электрического удара пользователя и загрязнения контактов руками пользователя. Эти небольшие и удобные разъемы аналогичны игровому разъему Nintendo GameBoy, который показал отличную долговечность. Кроме того, эти разъемы можно вставлять вслепую сзади РС. Не требуется никаких оконечных устройств (терминаторов - terminators) и ручной установки идентификаторов.

Шина IEEE 1394 рассчитана на 6-проводный кабель длиной до 4.5 м, который содержит две пары проводников для передачи данных и одну пару для питания устройства. Каждая сигнальная пара экранирована и весь кабель также экранирован. Кабель допускает напряжение от 8 В до 400 В и ток до 1.5 А и сохраняет физическую непрерывность устройства, когда устройство выключено или неисправно (что очень важно для последовательной топологии). Кабель обеспечивает питание для подключенных к шине устройств. По мере совершенствования стандарта ожидается, что шина обеспечит большие расстояния без повторителей и еще большую пропускную способность.

Основой любого соединения IEEE 1394 служит микросхема физического уровня и коммуникационного уровня, причем для устройства необходимы две микросхемы. Физический интерфейс (PHY) одного устройства соединяется с PHY другого устройства. Он содержит схемы, необходимые для выполнения функций арбитража и инициализации. Коммуникационный интерфейс соединяет PHY, а также внутренние схемы устройства. Он передает и принимает пакеты в формате IEEE 1394 и поддерживает асинхронные или изохронные передачи данных. Возможность поддержки асинхронных и изохронных форматов в одном и том же интерфейсе допускает работу на шине некритичных ко времени приложений, например сканеров или принтеров, а также приложений реального времени, например видео и звук. Все микросхемы физического уровня используют одну и ту же технологию, а микросхемы коммуникационного уровня специфичны для каждого устройства. Такой подход позволяет шине IEEE 1394 действовать как система "узел-узел" (peer-peer) в отличие от подхода клиент-сервер в шине USB. В результате системе IEEE 1394 не требуется ни обслуживающий хост, ни РС.

Асинхронная передача является традиционным способом передач данных между компьютерами и периферийными устройствами. Здесь данные передаются в одном направлении и сопровождаются последующим подтверждением источнику. В асинхронной передаче данных упор сделан на доставку, а не на производительность. Передача данных гарантирована и поддерживаются повторные передачи (retries). Изохронная передача данных обеспечивает поток данных с предопределенной скоростью, поэтому приложение может обрабатывать их с учетом временных соотношений. Это особенно важно для критичных во времени мультимедийных данных, когда доставка точно во времени (just-in-time delivery) устраняет необходимость в дорогом буферировании. Изохронные передачи данных работают по принципу широкого вещания (broadcast), когда одно или несколько устройств могут "прослушивать" (listen) передаваемые данные. По шине IEEE 1394 можно одновременно передавать несколько каналов (до 63) изохронных данных. Так как изохронные передачи могут занимать максимум 80% пропускной способности шины, остается достаточная полоса пропускания и для дополнительных асинхронных передач.

Масштабируемая архитектура шины IEEE 1394 и гибкая топология делают ее идеальной для подключения высокоскоростных устройств: от компьютеров и жестких дисков до цифрового аудио- и видеооборудования. Устройства можно подключать в виде шлейфной или древовидной топологии. Рисунок слева показывает две отдельные рабочие области, соединенные мостом шины IEEE 1394. Рабочая область #1 состоит из видеокамеры, РС и видеомагнитофона, которые все соединены через IEEE 1394. РС также подключен к физически удаленному принтеру через повторитель 1394, который увеличивает расстояние между устройствами, усиливая сигналы шины. На шине IEEE 1394 допускается до 16 "скачков" (hops) между любыми двумя устройствами. Размножитель (splitter) 1394 используется между мостом и принтером, чтобы предоставить еще один порт для подключения моста шины IEEE 1394. Размножители обеспечивают для пользователей большую гибкость топологии.

Рабочая область #2 содержит на сегменте шины 1394 только РС и принтер, а также соединение с мостом шины. Мост изолирует трафик данных внутри каждой рабочей области. Мосты шины IEEE 1394 допускают передавать выбранные данные из одного сегмента шины в другой. Поэтому PC #2 может запросить изображения от видеомагнитофона в рабочей области #1. Так как кабель шины передает и питание сигнальный интерфейс PHY всегда с питанием и данные передаются даже в том в том случае, если PC #1 выключен.

Каждый сегмент шины IEEE 1394 допускает подключение до 63 устройств. Сейчас каждое устройство может находиться на расстоянии до 4.5 м; большие расстояния возможны как с повторителями, так и без них. Усовершенствования кабелей позволят разносить устройства на большие расстояния. С помощью мостов можно объединять более 1000 сегментов, что обеспечивает значительный потенциал для расширения. Еще одно достоинство состоит в возможности выполнять транзакции с разными скоростями по одному носителю для устройства. Например, некоторые устройства могут работать со скоростью 100 Мб/с, а другие - со скоростями 200 Мб/с и 400 Мб/с. Разрешается горячая замена (подключение или отключение устройств) на шине даже тогда, когда шина полностью работает. Автоматически распознаются изменения в топологии шины. Благодаря этому становятся ненужными коммутаторы адресов и другие вмешательства пользователя для реконфигурирования шины.

Благодаря технологии передачи пакетов шину IEEE 1394 можно организовать так, как если бы между устройствами распределено пространство памяти, или как будто устройства находятся в слотах на материнской плате. Адрес устройства состоит из 64 битов, причем 10 битов отводятся для идентификатора сети, 6 битов для идентификатора узла и 48 битов для адресов памяти. В результате можно адресовать 1023 сети из 63 узлов, причем каждый имеет память 281 ТБ. Адресация памяти, а не каналов, считает ресурсы регистрами или памятью, к которым можно обратиться с помощью транзакций процессор-память. Все это обеспечивает простую сетевую организацию; например, цифровая камера может легко передать изображения прямо в цифровой принтер без компьютера-посредника. Шина IEEE 1394 показывает, что РС теряет свою доминирующую роль по объединению среды и его можно считать очень интеллектуальным узлом.

Необходимость использования двух микросхем вместо одной делает периферийные устройства для шины IEEE 1394 более дорогими по сравнению с устройствами для SCSI, IDE или USB, поэтому она не годится для медленных устройств. Однако ее достоинства для высокоскоростных приложений, например цифрового видеоредактирования, превращает шину IEEE 1394 в основной интерфейс для бытовой электроники.

Несмотря на достоинства шины IEEE 1394 и появление в 2000 г. материнских плат со встроенными контроллерами этой шины, будущий успех FireWire не гарантирован. Появление спецификации USB 2.0 значительно усложнило ситуацию.

Спецификация USB 2.0

В разработке этой спецификации, ориентированной на поддержку высокоскоростных периферийных устройств, принимали участие компании Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC и Philips. В феврале 1999 г. было объявлено о повышении существующей производительности в 10 - 20 раз, а в сентябре 1999 г. по результатам инженерных исследований оценки были повышены до 30 - 40 раз по сравнению с USB 1.1. Высказывались опасения, что при такой производительности шина USB навсегда "похоронит" шину IEEE 1394. Однако по общему мнению эти две шины ориентируются на различные применения. Цель USB 2.0 состоит в том, чтобы обеспечить поддержку всех современных и будущих популярных периферийных устройств РС, а шина IEEE 1394 ориентирована на подключение бытовых аудио- и видео-устройств, например цифровых видеомагнитофонов, DVD и цифровых телевизоров.

Согласно USB 2.0 пропускная способность повышается с 12 Мб/с до 360-480 Мб/с. Ожидается, что шина USB 2.0 будет совместима с USB 1.1, что обеспечит пользователям безболезненный переход к новой шине. Для нее будут разработаны новые скоростные периферийные устройства, которые расширят диапазон применений РС. Скорости 12 Мб/с вполне достаточно для таких устройств, как телефоны, цифровые камеры, клавиатура, мышь, цифровые джойстики, ленточные накопители, накопители на гибком диске, цифровые динамики, сканеры и принтеры. Повышенная пропускная способность USB 2.0 расширит функциональность периферийных устройств, обеспечивая поддержку камер с высокой разрешающей способностью для видеоконференций, а также скоростных сканеров и принтеров следующего поколения.

Существующие периферийные устройства для USB будут без изменений работать в системе с шиной USB 2.0. Таким устройствам, как клавиатура и мышь, не требуется повышенная пропускная способность USB 2.0 и они будут работать как устройства USB 1.1. Повышенная пропускная способность USB 2.0 расширит диапазон периферийных устройств, которые можно будет подключать к РС, а также позволит большему числу USB-устройств разделять имеющуюся пропускную способность шины вплоть до архитектурных пределов шины USB. Обратная совместимость USB 2.0 с USB 1.1 может стать решающим преимуществом в борьбе с шиной IEEE 1394 за интерфейс потребительских приборов.

Стандарт DeviceBay

DeviceBay представляет собой новый стандарт, который разработан вслед за стандартами шин IEEE 1394 и USB. Эти шины допускают подключение и отключение устройств "на лету", т.е. в процессе работы РС. Такая возможность горячей замены (hot swap, hot plug) потребовала нового специального соединения между устройствами и ответом на это требование стал стандарт DeviceBay. Он стандартизует отсеки, в которые можно вставлять жесткие диски, накопители CD-ROM и другие устройства. Монтажная рама устанавливается без инструментов и в процессе работы РС. Если стандарт DeviceBay получит широкое распространение, он покончит с плоскими кабелями внутри корпуса РС. Весь РС можно оформить в виде модульной конструкции, в которой все модули подключаются к шинам USB или FireWire как устройства DeviceBay. При этом устройство можно будет свободно перемещать между РС и другими домашними приборами.

Стандарт DeviceBay рассчитан на подключение таких устройств, как накопители Zip, накопители CD-ROM, ленточные накопители, модемы, жесткие диски, считыватели PC-карт и др.

XT-Bus – шина архитектуры XT – первая в семействе IBM PC. Относительно проста, поддерживает обмен 8-разрядными данными внутри 20-разрядного (1 Мб) адресного пространства (обозначается как "разрядность 8/20"), работает на частоте 4.77 МГц. Совместное использование линий IRQ в общем случае невозможно. Конструктивно оформлена в 62-контактних разъемах.

ISA (Industry Standard Architecture, архитектура промышленного стандарта) – основная шина на компьютерах типа PC AT (другое название – AT-Bus). Является расширением XT-Bus, разрядность – 16/24 (16 Мб), тактовая частота – 8 МГц, предельная пропускная способность – 5.55 Мб/с. Разделение IRQ также невозможно. Возможна нестандартная организация Bus Mastering, но для этого нужен запрограммированный 16-разрядный канал DMA. Конструктив – 62-контактный разъем XT-Bus с прилегающим к нему 36-контактным разъемом расширения.

EISA (Enhanced ISA, расширенная ISA) – функциональное и конструктивное расширение ISA. Внешне разъемы имеют такой же вид, как и ISA, и в них могут вставляться платы ISA, но в глубине разъема находятся дополнительные ряды контактов EISA, а платы EISA имеют более высокую ножевую часть разъема с дополнительными рядами контактов. Разрядность – 32/32 (адресное пространство – 4 Гб), работает также на частоте 8 МГц. Предельная пропускная способность – 32 Мб/с. Поддерживает Bus Mastering - режим управления шиной со стороны любого из устройств на шине, имеет систему арбитража для управления доступом устройств к шине, позволяет автоматически настраивать параметры устройств, возможно разделение каналов IRQ и DMA.

MCA (Micro Channel Architecture, микроканальная архитектура) – шина компьютеров PS/2 фирмы IBM. Не совместима ни с одной другой, разрядность – 32/32, (базовая - 8/24, остальные – в качестве расширений). Поддерживает Bus Mastering, имеет арбитраж и автоматическую конфигурацию, синхронная (жестко фиксирована длительность цикла обмена), предельная пропускная способность – 40 Мб/с. Конструктив – одно-трехсекционный разъем (такой же, как у VLB). Первая, основная, секция – 8-разрядная (90 контактов), вторая – 16-разрядное расширение (22 контакта), третья – 32-разрядное расширение (52 контакта). В основной секции предусмотрены линии для передачи звуковых сигналов. Дополнительно рядом с одним из разъемов может устанавливаться разъем видеорасширения (20 контактов). EISA и MCA во многом параллельны, появление EISA было обусловлено собственностью IBM на архитектуру MCA.

VLB (VESA Local Bus, локальная шина стандарта VESA) – 32-разрядное дополнение к шине ISA. Конструктивно представляет собой дополнительный разъем (116-контактный, как у MCA) при разъеме ISA. Разрядность – 32/32, тактовая частота – 25..50 МГц, предельная скорость обмена – 130 Мб/с. Электрически выполнена в виде расширения локальной шины процессора – большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации. Из-за этого возрастает нагрузка на выходные каскады процессора, ухудшается качество сигналов на локальной шине и снижается надежность обмена по ней. Поэтому VLB имеет жесткое ограничение на количество устанавливаемых устройств: при 33 МГц – три, 40 МГц – два, и при 50 МГц – одно, причем желательно интегрированное в системную плату.

PCI (Peripheral Component Interconnect, соединение внешних компонент) – развитие VLB в сторону EISA/MCA. Не совместима ни с какими другими, разрядность – 32/32 (расширенный вариант – 64/64), тактовая частота – до 33 МГц (PCI 2.1 – до 66 МГц), пропускная способность – до 132 Мб/с (264 Мб/с для 32/32 на 66 МГц и 528 Мб/с для 64/64 на 66 МГц), поддержка Bus Mastering и автоконфигурации. Количество разъемов шины на одном сегменте ограничего четырьмя. Сегментов может быть несколько, они соединяются друг с другом посредством мостов (bridge). Сегменты могут объединяться в различные топологии (дерево, звезда и т.п.). Самая популярная шина в настоящее время; используется также на компьютерах, отличных от IBM-совместимых. Разъем похож на MCA/VLB, но чуть длиннее (124 контакта). 64-разрядный разъем имеет дополнительную 64-контактную секцию с собственным ключом. Все разъемы и карты к ним делятся на поддерживающие уровни сигналов 5 В, 3.3 В и универсальные; первые два типа должны соответствовать друг другу, универсальные карты ставятся в любой разъем.

Существует также расширение MediaBus , введенное фирмой ASUSTek – дополнительный разъем содержит сигналы шины ISA.

PCMCIA (Personal Computer Memory Card International Association, ассоциация производителей плат памяти персональных компьютеров) – внешняя шина компьютеров класса NoteBook. Другое название модуля PCMCIA – PC Card. Предельно проста, разрядность – 16/26 (адресное пространство – 64 Мб), поддерживает автоконфигурацию, возможно подключение и отключение устройств в процессе работы компьютера. Конструктив – миниатюрный 68-контактный разъем. Контакты питания сделаны более длинными, что позволяет вставлять и вынимать карту при включенном питании компьютера.

Конец работы -

Эта тема принадлежит разделу:

Архитектура системных плат

Одной из главных микросхем системной платы является микросхема bios это основная система ввода вывода basic input output system зашитая в пзу.. обычно на системной плате установлено только пзу с системным main system.. обычно bios для современных системных плат разрабатывается одной из специализирующихся на этом фирм однако некоторые..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях: